Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N Ciudad Universitaria, México D.F, México.
Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany.
PLoS Comput Biol. 2014 Jun 26;10(6):e1003690. doi: 10.1371/journal.pcbi.1003690. eCollection 2014 Jun.
Communication between cells is a ubiquitous feature of cell populations and is frequently realized by secretion and detection of signaling molecules. Direct visualization of the resulting complex gradients between secreting and receiving cells is often impossible due to the small size of diffusing molecules and because such visualization requires experimental perturbations such as attachment of fluorescent markers, which can change diffusion properties. We designed a method to estimate such extracellular concentration profiles in vivo by using spatiotemporal mathematical models derived from microscopic analysis. This method is applied to populations of thousands of haploid yeast cells during mating in order to quantify the extracellular distributions of the pheromone α-factor and the activity of the aspartyl protease Bar1. We demonstrate that Bar1 limits the range of the extracellular pheromone signal and is critical in establishing α-factor concentration gradients, which is crucial for effective mating. Moreover, haploid populations of wild type yeast cells, but not BAR1 deletion strains, create a pheromone pattern in which cells differentially grow and mate, with low pheromone regions where cells continue to bud and regions with higher pheromone levels and gradients where cells conjugate to form diploids. However, this effect seems to be exclusive to high-density cultures. Our results show a new role of Bar1 protease regulating the pheromone distribution within larger populations and not only locally inside an ascus or among few cells. As a consequence, wild type populations have not only higher mating efficiency, but also higher growth rates than mixed MATa bar1Δ/MATα cultures. We provide an explanation of how a rapidly diffusing molecule can be exploited by cells to provide spatial information that divides the population into different transcriptional programs and phenotypes.
细胞间的通讯是细胞群体普遍存在的特征,通常通过分泌和检测信号分子来实现。由于扩散分子的体积小,而且这种可视化需要实验性的扰动,例如附着荧光标记物,这可能会改变扩散特性,因此,直接观察分泌细胞和接收细胞之间产生的复杂梯度通常是不可能的。我们设计了一种方法,通过使用源自微观分析的时空数学模型,在体内估计这种细胞外浓度分布。该方法应用于数千个单倍体酵母细胞在交配过程中的群体,以定量测量信息素α因子和天冬氨酸蛋白酶 Bar1 的细胞外分布。我们证明 Bar1 限制了细胞外信息素信号的范围,对于建立α因子浓度梯度至关重要,这对于有效的交配至关重要。此外,野生型酵母细胞的单倍体群体,但不是 BAR1 缺失株,会形成一种信息素模式,其中细胞以不同的方式生长和交配,低信息素区域的细胞继续出芽,而高信息素水平和梯度区域的细胞则相互结合形成二倍体。然而,这种效应似乎仅限于高密度培养物。我们的结果表明,Bar1 蛋白酶在更大的群体中调节信息素分布的新作用,而不仅仅是在一个ascus 内部或少数细胞之间。因此,野生型群体不仅具有更高的交配效率,而且比混合 MATa bar1Δ/MATα 培养物具有更高的生长速率。我们提供了一种解释,说明一种快速扩散的分子如何被细胞利用,提供空间信息,将群体分为不同的转录程序和表型。