Ferrari Erika, Benassi Rois, Sacchi Stefania, Pignedoli Francesca, Asti Mattia, Saladini Monica
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
J Inorg Biochem. 2014 Oct;139:38-48. doi: 10.1016/j.jinorgbio.2014.06.002. Epub 2014 Jun 11.
Curcuminoids represent new perspectives for the development of novel therapeutics for Alzheimer's disease (AD), one probable mechanism of action is related to their metal complexing ability. In this work we examined the metal complexing ability of substituted curcuminoids to propose new chelating molecules with biological properties comparable with curcumin but with improved stability as new potential AD therapeutic agents. The K2T derivatives originate from the insertion of a -CH2COOC(CH3)3 group on the central atom of the diketonic moiety of curcumin. They retain the diketo-ketoenol tautomerism which is solvent dependent. In aqueous solution the prevalent form is the diketo one but the addition of metal ion (Ga(3+), Cu(2+)) causes the dissociation of the enolic proton creating chelate complexes and shifting the tautomeric equilibrium towards the keto-enol form. The formation of metal complexes is followed by both NMR and UV-vis spectroscopy. The density functional theory (DFT) calculations on K2T21 complexes with Ga(3+) and Cu(2+) are performed and compared with those on curcumin complexes. Ga(K2T21)2(H2O)2 was found more stable than curcumin one. Good agreement is detected between calculated and experimental (1)H and (13)C NMR data. The calculated OH bond dissociation energy (BDE) and the OH proton dissociation enthalpy (PDE), allowed to predict the radical scavenging ability of the metal ion complexed with K2T21, while the calculated electronic affinity (EA) and ionization potential (IP) represent yardsticks of antioxidant properties. Eventually theoretical calculations suggest that the proton-transfer-associated superoxide-scavenging activity is enhanced after binding metal ions, and that Ga(3+) complexes display possible superoxide dismutase (SOD)-like activity.
姜黄素类化合物为阿尔茨海默病(AD)新型治疗药物的开发提供了新的视角,其一种可能的作用机制与它们的金属络合能力有关。在这项工作中,我们研究了取代姜黄素类化合物的金属络合能力,以提出具有与姜黄素相当的生物学特性但稳定性更高的新型螯合分子,作为潜在的新型AD治疗药物。K2T衍生物源于在姜黄素二酮部分的中心原子上插入一个-CH2COOC(CH3)3基团。它们保留了取决于溶剂的二酮-酮醇互变异构现象。在水溶液中,主要形式是二酮形式,但加入金属离子(Ga(3+)、Cu(2+))会导致烯醇式质子解离,形成螯合络合物,并使互变异构平衡向酮-烯醇形式移动。通过核磁共振(NMR)和紫外可见光谱(UV-vis)对金属络合物的形成进行跟踪。对K2T21与Ga(3+)和Cu(2+)的络合物进行了密度泛函理论(DFT)计算,并与姜黄素络合物的计算结果进行了比较。发现Ga(K2T21)2(H2O)2比姜黄素络合物更稳定。计算得到的(1)H和(13)C NMR数据与实验数据之间有很好的一致性。计算得到的OH键解离能(BDE)和OH质子解离焓(PDE),可以预测与K2T21络合的金属离子的自由基清除能力,而计算得到的电子亲和能(EA)和电离势(IP)则代表抗氧化性能的指标。最终的理论计算表明,结合金属离子后,与质子转移相关的超氧化物清除活性增强,并且Ga(3+)络合物表现出可能的超氧化物歧化酶(SOD)样活性。