Suppr超能文献

自适应神经控制在具有未知输出机制非线性的拟人机器人双臂协调中的应用。

Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism.

出版信息

IEEE Trans Cybern. 2015 Mar;45(3):521-32. doi: 10.1109/TCYB.2014.2329931. Epub 2014 Jun 24.

Abstract

To achieve an excellent dual-arm coordination of the humanoid robot, it is essential to deal with the nonlinearities existing in the system dynamics. The literatures so far on the humanoid robot control have a common assumption that the problem of output hysteresis could be ignored. However, in the practical applications, the output hysteresis is widely spread; and its existing limits the motion/force performances of the robotic system. In this paper, an adaptive neural control scheme, which takes the unknown output hysteresis and computational efficiency into account, is presented and investigated. In the controller design, the prior knowledge of system dynamics is assumed to be unknown. The motion error is guaranteed to converge to a small neighborhood of the origin by Lyapunov's stability theory. Simultaneously, the internal force is kept bounded and its error can be made arbitrarily small.

摘要

为了实现人形机器人的卓越双臂协调,处理系统动力学中存在的非线性问题至关重要。迄今为止,有关人形机器人控制的文献普遍假设可以忽略输出滞后问题。然而,在实际应用中,输出滞后现象广泛存在,限制了机器人系统的运动/力性能。本文提出并研究了一种自适应神经控制方案,该方案考虑了未知的输出滞后和计算效率。在控制器设计中,假设系统动力学的先验知识未知。通过 Lyapunov 稳定性理论,保证运动误差收敛到原点的小邻域内。同时,保持内力有界,并使误差任意小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验