Suppr超能文献

一种用于人形机器人的改进型模糊脑情感学习模型网络控制器

An Improved Fuzzy Brain Emotional Learning Model Network Controller for Humanoid Robots.

作者信息

Fang Wubing, Chao Fei, Lin Chih-Min, Yang Longzhi, Shang Changjing, Zhou Changle

机构信息

Cognitive Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, China.

Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Aberystwyth, United Kingdom.

出版信息

Front Neurorobot. 2019 Feb 4;13:2. doi: 10.3389/fnbot.2019.00002. eCollection 2019.

Abstract

The brain emotional learning (BEL) system was inspired by the biological amygdala-orbitofrontal model to mimic the high speed of the emotional learning mechanism in the mammalian brain, which has been successfully applied in many real-world applications. Despite of its success, such system often suffers from slow convergence for online humanoid robotic control. This paper presents an improved fuzzy BEL model (iFBEL) neural network by integrating a fuzzy neural network (FNN) to a conventional BEL, in an effort to better support humanoid robots. In particular, the system inputs are passed into a sensory and emotional channels that jointly produce the final outputs of the network. The non-linear approximation ability of the iFBEL is achieved by taking the BEL network as the emotional channel. The proposed iFBEL works with a robust controller in generating the hand and gait motion of a humanoid robot. The updating rules of the iFBEL-based controller are composed of two parts, including a sensory channel followed by the updating rules of the conventional BEL model, and the updating rules of the FNN and the robust controller which are derived from the "Lyapunov" function. The experiments on a three-joint robot manipulator and a six-joint biped robot demonstrated the superiority of the proposed system in reference to a conventional proportional-integral-derivative controller and a fuzzy cerebellar model articulation controller, based on the more accurate and faster control performance of the proposed iFBEL.

摘要

大脑情感学习(BEL)系统的灵感来源于生物杏仁核 - 眶额模型,旨在模仿哺乳动物大脑中情感学习机制的高速性,该系统已成功应用于许多实际应用中。尽管取得了成功,但这种系统在在线人形机器人控制中常常存在收敛速度慢的问题。本文提出了一种改进的模糊BEL模型(iFBEL)神经网络,通过将模糊神经网络(FNN)集成到传统的BEL中,以更好地支持人形机器人。具体而言,系统输入被传入一个感觉和情感通道,它们共同产生网络的最终输出。iFBEL的非线性逼近能力是通过将BEL网络作为情感通道来实现的。所提出的iFBEL与一个鲁棒控制器协同工作,用于生成人形机器人的手部和步态运动。基于iFBEL的控制器的更新规则由两部分组成,包括一个感觉通道以及随后的传统BEL模型的更新规则,还有从“李雅普诺夫”函数推导出来的FNN和鲁棒控制器的更新规则。在一个三关节机器人操纵器和一个六关节双足机器人上进行的实验表明,基于所提出的iFBEL更准确、更快的控制性能,该系统相对于传统的比例积分微分控制器和模糊小脑模型关节控制器具有优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验