School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia;
Western Australian Neuroscience Research Institute and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia;
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2905-14. doi: 10.1073/pnas.1402544111. Epub 2014 Jun 26.
Duchenne muscular dystrophy is a fatal X-linked disease characterized by the absence of dystrophin. Approximately 20% of boys will die of dilated cardiomyopathy that is associated with cytoskeletal protein disarray, contractile dysfunction, and reduced energy production. However, the mechanisms for altered energy metabolism are not yet fully clarified. Calcium influx through the L-type Ca(2+) channel is critical for maintaining cardiac excitation and contraction. The L-type Ca(2+) channel also regulates mitochondrial function and metabolic activity via transmission of movement of the auxiliary beta subunit through intermediate filament proteins. Here, we find that activation of the L-type Ca(2+) channel is unable to induce increases in mitochondrial membrane potential and metabolic activity in intact cardiac myocytes from the murine model of Duchenne muscular dystrophy (mdx) despite robust increases recorded in wt myocytes. Treatment of mdx mice with morpholino oligomers to induce exon skipping of dystrophin exon 23 (that results in functional dystrophin accumulation) or application of a peptide that resulted in block of voltage-dependent anion channel (VDAC) "rescued" mitochondrial membrane potential and metabolic activity in mdx myocytes. The mitochondrial VDAC coimmunoprecipitated with the L-type Ca(2+) channel. We conclude that the absence of dystrophin in the mdx ventricular myocyte leads to impaired functional communication between the L-type Ca(2+) channel and mitochondrial VDAC. This appears to contribute to metabolic inhibition. These findings provide new mechanistic and functional insight into cardiomyopathy associated with Duchenne muscular dystrophy.
杜氏肌营养不良症是一种致命的 X 连锁疾病,其特征是缺乏肌营养不良蛋白。大约 20%的男孩会死于扩张型心肌病,该病与细胞骨架蛋白排列紊乱、收缩功能障碍和能量产生减少有关。然而,改变能量代谢的机制尚未完全阐明。通过 L 型钙 (Ca 2+ )通道的钙内流对于维持心脏兴奋和收缩至关重要。L 型 Ca 2+ 通道还通过辅助β亚基通过中间丝蛋白的运动传递来调节线粒体功能和代谢活性。在这里,我们发现尽管在 wt 心肌细胞中记录到了强大的增加,但在 Duchenne 肌营养不良症 (mdx) 小鼠模型的完整心肌细胞中,L 型 Ca 2+ 通道的激活无法诱导线粒体膜电位和代谢活性的增加。用 morpholino 寡核苷酸处理 mdx 小鼠以诱导肌营养不良蛋白外显子 23 的外显子跳跃(导致功能性肌营养不良蛋白积累)或应用导致电压依赖性阴离子通道 (VDAC) 阻断的肽,挽救了 mdx 心肌细胞中的线粒体膜电位和代谢活性。线粒体 VDAC 与 L 型 Ca 2+ 通道共免疫沉淀。我们得出结论,mdx 心室肌细胞中肌营养不良蛋白的缺失导致 L 型 Ca 2+ 通道和线粒体 VDAC 之间的功能通讯受损。这似乎导致代谢抑制。这些发现为与 Duchenne 肌营养不良症相关的心肌病提供了新的机制和功能见解。