Suppr超能文献

病毒进入。拉沙病毒进入需要触发诱导的受体开关。

Virus entry. Lassa virus entry requires a trigger-induced receptor switch.

机构信息

Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands.

Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

出版信息

Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.

Abstract

Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor α-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.

摘要

拉沙病毒可在鼠类与人之间传播,并可导致致命性出血热。尽管拉沙病毒具有广泛的嗜性,但 30 年前有报道称鸡细胞能抵抗感染。我们发现拉沙病毒在禽类细胞中能轻易地与细胞表面受体α- 肌动蛋白结合,但在易感物种中,病毒进入需要依赖 pH 值的细胞内受体——溶酶体驻留蛋白 LAMP1。反复的单倍体筛选揭示,唾液酸转移酶 ST3GAL4 对于病毒糖蛋白与 LAMP1 的相互作用是必需的。LAMP1 上存在一个糖基化残基,仅在易感物种中存在而在鸟类中缺失,对于与拉沙病毒包膜蛋白的相互作用以及随后的感染是必需的。Lamp1 缺陷型小鼠对拉沙病毒的抗性突出了该受体转换在体内的相关性。

相似文献

1
Virus entry. Lassa virus entry requires a trigger-induced receptor switch.
Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.
2
Role of LAMP1 Binding and pH Sensing by the Spike Complex of Lassa Virus.
J Virol. 2016 Oct 28;90(22):10329-10338. doi: 10.1128/JVI.01624-16. Print 2016 Nov 15.
3
Identification of residues in Lassa virus glycoprotein 1 involved in receptor switch.
Virol Sin. 2024 Aug;39(4):600-608. doi: 10.1016/j.virs.2024.06.001. Epub 2024 Jun 6.
4
Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for Alpha-Dystroglycan Utilization.
J Virol. 2017 Aug 24;91(18). doi: 10.1128/JVI.00574-17. Print 2017 Sep 15.
5
Axl Can Serve as Entry Factor for Lassa Virus Depending on the Functional Glycosylation of Dystroglycan.
J Virol. 2018 Feb 12;92(5). doi: 10.1128/JVI.01613-17. Print 2018 Mar 1.
6
Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction.
J Virol. 2017 Jan 31;91(4). doi: 10.1128/JVI.01902-16. Print 2017 Feb 15.
8
Emerging intracellular receptors for hemorrhagic fever viruses.
Trends Microbiol. 2015 Jul;23(7):392-400. doi: 10.1016/j.tim.2015.04.006. Epub 2015 May 21.
9
Molecular Mechanism for LAMP1 Recognition by Lassa Virus.
J Virol. 2015 Aug;89(15):7584-92. doi: 10.1128/JVI.00651-15. Epub 2015 May 13.
10
Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry.
J Virol. 2012 Feb;86(4):2067-78. doi: 10.1128/JVI.06451-11. Epub 2011 Dec 7.

引用本文的文献

1
Metal-induced conformational changes in the Sabiá virus spike complex.
Nat Microbiol. 2025 Aug 1. doi: 10.1038/s41564-025-02075-8.
2
Polyclonal B cells acquire LCMV antigens in a GP1-dependent manner.
PLoS Pathog. 2025 Jul 9;21(7):e1013345. doi: 10.1371/journal.ppat.1013345. eCollection 2025 Jul.
3
Infusion of neutralization into Lassa vaccine design.
Trends Immunol. 2025 Jul;46(7):512-524. doi: 10.1016/j.it.2025.05.006. Epub 2025 Jun 24.
4
Lassa Virus Infection of Primary Human Airway Epithelial Cells.
Viruses. 2025 Apr 22;17(5):592. doi: 10.3390/v17050592.
5
Mapping the antibody response to Lassa virus vaccination of non-human primates.
EBioMedicine. 2025 Apr;114:105673. doi: 10.1016/j.ebiom.2025.105673. Epub 2025 Mar 31.
6
Lassa virus protein-protein interactions as mediators of Lassa fever pathogenesis.
Virol J. 2025 Feb 28;22(1):52. doi: 10.1186/s12985-025-02669-y.
10
The structure of the Lujo virus spike complex.
Nat Commun. 2024 Aug 21;15(1):7175. doi: 10.1038/s41467-024-51606-0.

本文引用的文献

1
Role of receptor binding specificity in influenza A virus transmission and pathogenesis.
EMBO J. 2014 Apr 16;33(8):823-41. doi: 10.1002/embj.201387442. Epub 2014 Mar 25.
2
A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility.
Cell. 2013 Feb 14;152(4):909-22. doi: 10.1016/j.cell.2013.01.030. Epub 2013 Feb 8.
5
Late-penetrating viruses.
Curr Opin Virol. 2011 Jul;1(1):35-43. doi: 10.1016/j.coviro.2011.05.004. Epub 2011 Jun 12.
6
The curious case of arenavirus entry, and its inhibition.
Viruses. 2012 Jan;4(1):83-101. doi: 10.3390/v4010083. Epub 2012 Jan 13.
7
Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.
Nature. 2011 Aug 24;477(7364):340-3. doi: 10.1038/nature10348.
8
High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.
PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub 2011 Apr 29.
9
Organization and assembly of the TRAPPII complex.
Traffic. 2011 Jun;12(6):715-25. doi: 10.1111/j.1600-0854.2011.01181.x. Epub 2011 Apr 1.
10
How does cellular heparan sulfate function in viral pathogenicity?
Biomed Environ Sci. 2011 Feb;24(1):81-7. doi: 10.3967/0895-3988.2011.01.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验