Suppr超能文献

基于粒子群优化算法和布谷鸟搜索技术的支持向量机用于临床疾病诊断

PSO-based support vector machine with cuckoo search technique for clinical disease diagnoses.

作者信息

Liu Xiaoyong, Fu Hui

机构信息

Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, China ; School of Business Administration, South China University of Technology, Guangzhou, Guangdong 510640, China.

Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, China.

出版信息

ScientificWorldJournal. 2014;2014:548483. doi: 10.1155/2014/548483. Epub 2014 May 25.

Abstract

Disease diagnosis is conducted with a machine learning method. We have proposed a novel machine learning method that hybridizes support vector machine (SVM), particle swarm optimization (PSO), and cuckoo search (CS). The new method consists of two stages: firstly, a CS based approach for parameter optimization of SVM is developed to find the better initial parameters of kernel function, and then PSO is applied to continue SVM training and find the best parameters of SVM. Experimental results indicate that the proposed CS-PSO-SVM model achieves better classification accuracy and F-measure than PSO-SVM and GA-SVM. Therefore, we can conclude that our proposed method is very efficient compared to the previously reported algorithms.

摘要

疾病诊断采用机器学习方法进行。我们提出了一种将支持向量机(SVM)、粒子群优化(PSO)和布谷鸟搜索(CS)相结合的新型机器学习方法。新方法包括两个阶段:首先,开发一种基于CS的方法用于SVM的参数优化,以找到核函数的更好初始参数,然后应用PSO继续进行SVM训练并找到SVM的最佳参数。实验结果表明,所提出的CS-PSO-SVM模型比PSO-SVM和GA-SVM具有更好的分类准确率和F值。因此,我们可以得出结论,与先前报道的算法相比,我们提出的方法非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f11/4058169/6a79e4da792b/TSWJ2014-548483.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验