Agricultural Research Station (SKNAU, Jobner), Fatehpur-Shekhawati, Sikar, 332301, India.
Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.
Sci Rep. 2024 Sep 30;14(1):22728. doi: 10.1038/s41598-024-72056-0.
This study aimed to classifying wheat genotypes using support vector machines (SVMs) improved with ensemble algorithms and optimization techniques. Utilizing data from 302 wheat genotypes and 14 morphological attributes to evaluate six SVM kernels: linear, radial basis function (RBF), sigmoid, and polynomial degrees 1-3. Various optimization methods, including grid search, random search, genetic algorithms, differential evolution, and particle swarm optimization, were used. The radial basis function kernel achieves the highest accuracy at 93.2%, and the weighted accuracy ensemble further improves it to 94.9%. This study shows the effectiveness of these methods in agricultural research and crop improvement. Notably, optimization-based SVM classification, particularly with particle swarm optimization, saw a significant 1.7% accuracy gain in the test set, reaching 94.9% accuracy. These findings underscore the efficacy of RBF kernels and optimization techniques in improving wheat genotype classification accuracy and highlight the potential of SVMs in agricultural research and crop improvement endeavors.
本研究旨在使用集成算法和优化技术改进的支持向量机(SVM)对小麦基因型进行分类。利用来自 302 个小麦基因型和 14 个形态学属性的数据,评估了 6 种 SVM 核函数:线性、径向基函数(RBF)、Sigmoid 和多项式度 1-3。使用了各种优化方法,包括网格搜索、随机搜索、遗传算法、差分进化和粒子群优化。RBF 核函数的准确率最高,达到 93.2%,加权准确率集成进一步提高到 94.9%。本研究表明了这些方法在农业研究和作物改良中的有效性。值得注意的是,基于优化的 SVM 分类,特别是使用粒子群优化,在测试集上的准确率提高了 1.7%,达到了 94.9%的准确率。这些发现突出了 RBF 核函数和优化技术在提高小麦基因型分类准确率方面的有效性,并强调了 SVM 在农业研究和作物改良中的潜力。