Suppr超能文献

具有超薄赤铁矿壳的核壳纳米线光电极中用于增强可见光吸收和提高水分解效率的铝等离子体学

Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells.

机构信息

Department of Physics and Astronomy and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States.

出版信息

Nano Lett. 2014 Aug 13;14(8):4517-22. doi: 10.1021/nl501541s. Epub 2014 Jul 2.

Abstract

The poor internal quantum efficiency (IQE) arising from high recombination and insufficient absorption is one of the critical challenges toward achieving high efficiency water splitting in hematite (α-Fe2O3) photoelectrodes. By combining the nanowire (NW) geometry with the localized surface plasmon resonance (LSPR) in semiconductor-metal-metal oxide core-multishell (CMS) NWs, we theoretically demonstrate an effective route to strongly improve absorption within ultrathin (sub-50 nm) hematite layers. We show that Si-Al-Fe2O3 CMS NWs exhibit photocurrent densities comparable to Si-Ag-Fe2O3 CMS and outperform Fe2O3, Si-Fe2O3 CS and Si-Au-Fe2O3 CMS NWs. Specifically; Si-Al-Fe2O3 CMS NWs reach photocurrent densities of ∼ 11.81 mA/cm(2) within a 40 nm thick hematite shell which corresponding to a solar to hydrogen (STH) efficiency of 14.5%. This corresponds to about 93% of the theoretical maximum for bulk hematite. Therefore, we establish Al as an excellent alternative plasmonic material compared to precious metals in CMS structures. Further, the absorbed photon flux is close to the NW surface in the CMS NWs, which ensures the charges generated can reach the reaction site with minimal recombining. Although the NW geometry is anisotropic, the CMS NWs exhibit polarization independent absorption over a large range of incidence angles. Finally, we show that Si-Al-Fe2O3 CMS NWs demonstrate photocurrent densities greater than ∼ 8.2 mA/cm(2) (STH efficiency of 10%) for incidence angles as large as 45°. These theoretical results strongly establish the effectiveness of the Al-based CMS NWs for achieving scalable and cost-effective photoelectrodes with improved IQE, enabling a novel route toward high efficiency water splitting.

摘要

在赤铁矿(α-Fe2O3)光电极中,高复合率和不足的吸收导致的低内部量子效率(IQE)是实现高效水分解的关键挑战之一。通过将纳米线(NW)几何形状与半导体-金属-金属氧化物核-多壳(CMS)NWs 中的局域表面等离子体共振(LSPR)结合,我们从理论上证明了一种在超薄(亚 50nm)赤铁矿层中有效提高吸收的有效途径。我们表明,Si-Al-Fe2O3 CMS NWs 表现出与 Si-Ag-Fe2O3 CMS 相当的光电流密度,并优于 Fe2O3、Si-Fe2O3 CS 和 Si-Au-Fe2O3 CMS NWs。具体来说;Si-Al-Fe2O3 CMS NWs 在 40nm 厚的赤铁矿壳内达到约 11.81mA/cm2 的光电流密度,对应于 14.5%的太阳能到氢气(STH)效率。这对应于体赤铁矿理论最大值的约 93%。因此,我们确定 Al 是 CMS 结构中贵金属的一种极好的替代等离子体材料。此外,在 CMS NWs 中,吸收的光子通量接近 NW 表面,这确保了生成的电荷可以以最小的复合到达反应位点。尽管 NW 几何形状是各向异性的,但 CMS NWs 在大角度入射范围内表现出与偏振无关的吸收。最后,我们表明,Si-Al-Fe2O3 CMS NWs 在大角度入射(45°)下,光电流密度大于约 8.2mA/cm2(10%的 STH 效率)。这些理论结果有力地证明了基于 Al 的 CMS NWs 对于实现具有改进 IQE 的可扩展且具有成本效益的光电管的有效性,为实现高效水分解开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验