Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany.
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany and Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, California 93106, USA.
Phys Rev Lett. 2014 Jun 13;112(23):238303. doi: 10.1103/PhysRevLett.112.238303. Epub 2014 Jun 10.
Recent experiments with self-phoretic particles at low concentrations show a pronounced dynamic clustering [I. Theurkauff et al., Phys. Rev. Lett. 108, 268303 (2012)]. We model this situation by taking into account the translational and rotational diffusiophoretic motion, which the active particles perform in their self-generated chemical field. Our Brownian dynamics simulations show pronounced dynamic clustering only when these two phoretic contributions give rise to competing attractive and repulsive interactions, respectively. We identify two dynamic clustering states and characterize them by power-law-exponential distributions. In case of mere attraction a chemotactic collapse occurs directly from the gaslike into the collapsed state, which we also predict by mapping our Langevin dynamics on the Keller-Segel model for bacterial chemotaxis.
最近在低浓度下进行的自扩散粒子实验显示出明显的动态聚集[I. Theurkauff 等人,Phys. Rev. Lett. 108, 268303 (2012)]。我们通过考虑平移和旋转扩散运动来模拟这种情况,这些运动是活性粒子在其自身产生的化学场中进行的。我们的布朗动力学模拟表明,只有当这两种扩散贡献分别产生竞争的吸引和排斥相互作用时,才会出现明显的动态聚集。我们确定了两种动态聚集状态,并通过幂律指数分布对其进行了特征描述。在仅仅存在吸引力的情况下,从气态直接发生趋化崩溃进入崩溃状态,我们也通过将我们的朗之万动力学映射到细菌趋化的凯勒-塞格尔模型来预测这种情况。