Suppr超能文献

彩色视网膜图像中渗出物的检测用于糖尿病性视网膜病变的大规模筛查。

Exudate detection in color retinal images for mass screening of diabetic retinopathy.

机构信息

Centre for Mathematical Morphology, Mathematics and Systems Department, MINES ParisTech, 35 rue Saint-Honoré, Fontainebleau, France.

Centre for Mathematical Morphology, Mathematics and Systems Department, MINES ParisTech, 35 rue Saint-Honoré, Fontainebleau, France.

出版信息

Med Image Anal. 2014 Oct;18(7):1026-43. doi: 10.1016/j.media.2014.05.004. Epub 2014 May 22.

Abstract

The automatic detection of exudates in color eye fundus images is an important task in applications such as diabetic retinopathy screening. The presented work has been undertaken in the framework of the TeleOphta project, whose main objective is to automatically detect normal exams in a tele-ophthalmology network, thus reducing the burden on the readers. A new clinical database, e-ophtha EX, containing precisely manually contoured exudates, is introduced. As opposed to previously available databases, e-ophtha EX is very heterogeneous. It contains images gathered within the OPHDIAT telemedicine network for diabetic retinopathy screening. Image definition, quality, as well as patients condition or the retinograph used for the acquisition, for example, are subject to important changes between different examinations. The proposed exudate detection method has been designed for this complex situation. We propose new preprocessing methods, which perform not only normalization and denoising tasks, but also detect reflections and artifacts in the image. A new candidates segmentation method, based on mathematical morphology, is proposed. These candidates are characterized using classical features, but also novel contextual features. Finally, a random forest algorithm is used to detect the exudates among the candidates. The method has been validated on the e-ophtha EX database, obtaining an AUC of 0.95. It has been also validated on other databases, obtaining an AUC between 0.93 and 0.95, outperforming state-of-the-art methods.

摘要

眼底彩色图像中渗出物的自动检测是糖尿病视网膜病变筛查等应用中的一项重要任务。本工作是在 TeleOphta 项目的框架内进行的,该项目的主要目标是在远程眼科网络中自动检测正常检查,从而减轻读者的负担。引入了一个新的临床数据库 e-ophtha EX,其中包含精确地手动轮廓的渗出物。与以前可用的数据库不同,e-ophtha EX 非常异构。它包含为糖尿病视网膜病变筛查而在 OPHDIAT 远程医疗网络中收集的图像。例如,图像定义、质量以及患者的状况或用于采集的视网膜仪,在不同的检查之间存在重要变化。提出的渗出物检测方法是针对这种复杂情况设计的。我们提出了新的预处理方法,不仅执行归一化和去噪任务,而且还检测图像中的反射和伪影。提出了一种基于数学形态学的新候选分割方法。这些候选者使用经典特征进行特征化,但也使用新的上下文特征。最后,使用随机森林算法在候选者中检测渗出物。该方法在 e-ophtha EX 数据库上进行了验证,获得了 0.95 的 AUC。它还在其他数据库上进行了验证,获得了 0.93 到 0.95 之间的 AUC,优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验