文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2011 年至 2021 年全球机器学习在糖尿病视网膜病变领域文献的概述:文献计量分析。

Overview of global publications on machine learning in diabetic retinopathy from 2011 to 2021: Bibliometric analysis.

机构信息

Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou,  China.

College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou,  China.

出版信息

Front Endocrinol (Lausanne). 2022 Dec 15;13:1032144. doi: 10.3389/fendo.2022.1032144. eCollection 2022.


DOI:10.3389/fendo.2022.1032144
PMID:36589855
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9797582/
Abstract

PURPOSE: To comprehensively analyze and discuss the publications on machine learning (ML) in diabetic retinopathy (DR) following a bibliometric approach. METHODS: The global publications on ML in DR from 2011 to 2021 were retrieved from the Web of Science Core Collection (WoSCC) database. We analyzed the publication and citation trend over time and identified highly-cited articles, prolific countries, institutions, journals and the most relevant research domains. VOSviewer and Wordcloud are used to visualize the mainstream research topics and evolution of subtopics in the form of co-occurrence maps of keywords. RESULTS: By analyzing a total of 1147 relevant publications, this study found a rapid increase in the number of annual publications, with an average growth rate of 42.68%. India and China were the most productive countries. was the most productive journal in this field. In addition, some notable common points were found in the highly-cited articles. The keywords analysis showed that "diabetic retinopathy", "classification", and "fundus images" were the most frequent keywords for the entire period, as automatic diagnosis of DR was always the mainstream topic in the relevant field. The evolution of keywords highlighted some breakthroughs, including "deep learning" and "optical coherence tomography", indicating the advance in technologies and changes in the research attention. CONCLUSIONS: As new research topics have emerged and evolved, studies are becoming increasingly diverse and extensive. Multiple modalities of medical data, new ML techniques and constantly optimized algorithms are the future trends in this multidisciplinary field.

摘要

目的:采用文献计量学方法全面分析和讨论机器学习(ML)在糖尿病视网膜病变(DR)中的应用。

方法:从 Web of Science 核心合集(WoSCC)数据库中检索了 2011 年至 2021 年关于 ML 在 DR 中的全球出版物。我们分析了随时间推移的发表和引用趋势,并确定了高引用文章、高产国家、机构、期刊和最相关的研究领域。VOSviewer 和 Wordcloud 用于以关键词共现图谱的形式可视化主流研究主题和子主题的演变。

结果:通过分析总共 1147 篇相关出版物,本研究发现年度出版物数量迅速增加,平均增长率为 42.68%。印度和中国是最具生产力的国家。《柳叶刀糖尿病与内分泌学》是该领域最具生产力的期刊。此外,高引用文章中还发现了一些值得注意的共同点。关键词分析表明,“糖尿病视网膜病变”、“分类”和“眼底图像”是整个时期最常见的关键词,因为 DR 的自动诊断一直是相关领域的主流话题。关键词的演变突出了一些突破,包括“深度学习”和“光学相干断层扫描”,这表明技术的进步和研究重点的变化。

结论:随着新的研究主题的出现和发展,研究变得越来越多样化和广泛。多模态医学数据、新的 ML 技术和不断优化的算法是这一多学科领域的未来趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/f76677b43163/fendo-13-1032144-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/f68e68541815/fendo-13-1032144-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/e7875bec006c/fendo-13-1032144-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/502ee4fe2cbc/fendo-13-1032144-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/140929ad3bb6/fendo-13-1032144-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/f76677b43163/fendo-13-1032144-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/f68e68541815/fendo-13-1032144-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/e7875bec006c/fendo-13-1032144-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/502ee4fe2cbc/fendo-13-1032144-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/140929ad3bb6/fendo-13-1032144-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07c/9797582/f76677b43163/fendo-13-1032144-g005.jpg

相似文献

[1]
Overview of global publications on machine learning in diabetic retinopathy from 2011 to 2021: Bibliometric analysis.

Front Endocrinol (Lausanne). 2022

[2]
Global trends and performances in diabetic retinopathy studies: A bibliometric analysis.

Front Public Health. 2023

[3]
Artificial intelligence in diabetic retinopathy: Bibliometric analysis.

Comput Methods Programs Biomed. 2023-4

[4]
Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020.

J Control Release. 2022-5

[5]
Global research of artificial intelligence in strabismus: a bibliometric analysis.

Front Med (Lausanne). 2023-9-20

[6]
Analyzing Diabetes Detection and Classification: A Bibliometric Review (2000-2023).

Sensors (Basel). 2024-8-19

[7]
Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in diabetic retinopathy.

Front Endocrinol (Lausanne). 2022

[8]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[9]
Global research trends and future directions in diabetic macular edema research: A bibliometric and visualized analysis.

Medicine (Baltimore). 2024-6-21

[10]
Study of obesity research using machine learning methods: A bibliometric and visualization analysis from 2004 to 2023.

Medicine (Baltimore). 2024-9-6

引用本文的文献

[1]
Analysis and Mapping of Machine Learning in the Context of Diabetes.

Health Sci Rep. 2025-8-13

[2]
Artificial intelligence applied to diabetes complications: a bibliometric analysis.

Front Artif Intell. 2025-1-31

[3]
Global research of artificial intelligence in eyelid diseases: A bibliometric analysis.

Heliyon. 2024-7-20

[4]
Knowledge structure and global trends of machine learning in stroke over the past decade: A scientometric analysis.

Heliyon. 2024-1-12

[5]
Global research on artificial intelligence in thyroid-associated ophthalmopathy: A bibliometric analysis.

Adv Ophthalmol Pract Res. 2023-11-30

[6]
Machine Learning and Deep Learning Techniques Applied to Diabetes Research: A Bibliometric Analysis.

J Diabetes Sci Technol. 2024-3

[7]
Global research of artificial intelligence in strabismus: a bibliometric analysis.

Front Med (Lausanne). 2023-9-20

本文引用的文献

[1]
Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks.

Nat Commun. 2021-8-10

[2]
Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.

Comput Biol Med. 2021-8

[3]
Domain adaptation and self-supervised learning for surgical margin detection.

Int J Comput Assist Radiol Surg. 2021-5

[4]
Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.

Lancet Digit Health. 2019-5

[5]
Artificial intelligence-enabled screening for diabetic retinopathy: a real-world, multicenter and prospective study.

BMJ Open Diabetes Res Care. 2020-10

[6]
Automatic detection of non-perfusion areas in diabetic macular edema from fundus fluorescein angiography for decision making using deep learning.

Sci Rep. 2020-9-15

[7]
Artificial Intelligence in Health Care: Bibliometric Analysis.

J Med Internet Res. 2020-7-29

[8]
Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients.

Br J Ophthalmol. 2021-5

[9]
Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders.

Nat Biomed Eng. 2020-6-22

[10]
Role of Inflammation in Classification of Diabetic Macular Edema by Optical Coherence Tomography.

J Diabetes Res. 2019-12-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索