Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, China.
College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.
Front Endocrinol (Lausanne). 2022 Dec 15;13:1032144. doi: 10.3389/fendo.2022.1032144. eCollection 2022.
PURPOSE: To comprehensively analyze and discuss the publications on machine learning (ML) in diabetic retinopathy (DR) following a bibliometric approach. METHODS: The global publications on ML in DR from 2011 to 2021 were retrieved from the Web of Science Core Collection (WoSCC) database. We analyzed the publication and citation trend over time and identified highly-cited articles, prolific countries, institutions, journals and the most relevant research domains. VOSviewer and Wordcloud are used to visualize the mainstream research topics and evolution of subtopics in the form of co-occurrence maps of keywords. RESULTS: By analyzing a total of 1147 relevant publications, this study found a rapid increase in the number of annual publications, with an average growth rate of 42.68%. India and China were the most productive countries. was the most productive journal in this field. In addition, some notable common points were found in the highly-cited articles. The keywords analysis showed that "diabetic retinopathy", "classification", and "fundus images" were the most frequent keywords for the entire period, as automatic diagnosis of DR was always the mainstream topic in the relevant field. The evolution of keywords highlighted some breakthroughs, including "deep learning" and "optical coherence tomography", indicating the advance in technologies and changes in the research attention. CONCLUSIONS: As new research topics have emerged and evolved, studies are becoming increasingly diverse and extensive. Multiple modalities of medical data, new ML techniques and constantly optimized algorithms are the future trends in this multidisciplinary field.
目的:采用文献计量学方法全面分析和讨论机器学习(ML)在糖尿病视网膜病变(DR)中的应用。
方法:从 Web of Science 核心合集(WoSCC)数据库中检索了 2011 年至 2021 年关于 ML 在 DR 中的全球出版物。我们分析了随时间推移的发表和引用趋势,并确定了高引用文章、高产国家、机构、期刊和最相关的研究领域。VOSviewer 和 Wordcloud 用于以关键词共现图谱的形式可视化主流研究主题和子主题的演变。
结果:通过分析总共 1147 篇相关出版物,本研究发现年度出版物数量迅速增加,平均增长率为 42.68%。印度和中国是最具生产力的国家。《柳叶刀糖尿病与内分泌学》是该领域最具生产力的期刊。此外,高引用文章中还发现了一些值得注意的共同点。关键词分析表明,“糖尿病视网膜病变”、“分类”和“眼底图像”是整个时期最常见的关键词,因为 DR 的自动诊断一直是相关领域的主流话题。关键词的演变突出了一些突破,包括“深度学习”和“光学相干断层扫描”,这表明技术的进步和研究重点的变化。
结论:随着新的研究主题的出现和发展,研究变得越来越多样化和广泛。多模态医学数据、新的 ML 技术和不断优化的算法是这一多学科领域的未来趋势。
Front Endocrinol (Lausanne). 2022
Front Public Health. 2023
Comput Methods Programs Biomed. 2023-4
J Control Release. 2022-5
Front Med (Lausanne). 2023-9-20
Sensors (Basel). 2024-8-19
Front Biosci (Landmark Ed). 2022-8-31
Medicine (Baltimore). 2024-6-21
Medicine (Baltimore). 2024-9-6
Health Sci Rep. 2025-8-13
Front Artif Intell. 2025-1-31
Adv Ophthalmol Pract Res. 2023-11-30
J Diabetes Sci Technol. 2024-3
Front Med (Lausanne). 2023-9-20
Int J Comput Assist Radiol Surg. 2021-5
BMJ Open Diabetes Res Care. 2020-10
J Med Internet Res. 2020-7-29
J Diabetes Res. 2019-12-20