Ben-Lulu Shani, Ziv Tamar, Admon Arie, Weisman-Shomer Pnina, Benhar Moran
From the ‡From the Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel;
§Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
Mol Cell Proteomics. 2014 Oct;13(10):2573-83. doi: 10.1074/mcp.M114.038166. Epub 2014 Jun 27.
Protein S-nitrosylation, the nitric oxide-mediated posttranslational modification of cysteine residues, has emerged as an important regulatory mechanism in diverse cellular processes. Yet, knowledge about the S-nitrosoproteome in different cell types and cellular contexts is still limited and many questions remain regarding the precise roles of protein S-nitrosylation and denitrosylation. Here we present a novel strategy to identify reversibly nitrosylated proteins. Our approach is based on nitrosothiol capture and enrichment using a thioredoxin trap mutant, followed by protein identification by mass spectrometry. Employing this approach, we identified more than 400 putative nitroso-proteins in S-nitrosocysteine-treated human monocytes and about 200 nitrosylation substrates in endotoxin and cytokine-stimulated mouse macrophages. The large majority of these represent novel nitrosylation targets and they include many proteins with key functions in cellular homeostasis and signaling. Biochemical and functional experiments in vitro and in cells validated the proteomic results and further suggested a role for thioredoxin in the denitrosylation and activation of inducible nitric oxide synthase and the protein kinase MEK1. Our findings contribute to a better understanding of the macrophage S-nitrosoproteome and the role of thioredoxin-mediated denitrosylation in nitric oxide signaling. The approach described here may prove generally useful for the identification and exploration of nitroso-proteomes under various physiological and pathophysiological conditions.
蛋白质S-亚硝基化是一氧化氮介导的半胱氨酸残基的翻译后修饰,已成为多种细胞过程中的一种重要调节机制。然而,关于不同细胞类型和细胞环境中的S-亚硝基蛋白质组的知识仍然有限,关于蛋白质S-亚硝基化和去亚硝基化的确切作用仍有许多问题。在此,我们提出了一种鉴定可逆亚硝基化蛋白质的新策略。我们的方法基于使用硫氧还蛋白捕获突变体进行亚硝基硫醇捕获和富集,随后通过质谱鉴定蛋白质。采用这种方法,我们在经S-亚硝基半胱氨酸处理的人单核细胞中鉴定出400多种假定的亚硝基化蛋白质,在内毒素和细胞因子刺激的小鼠巨噬细胞中鉴定出约200种亚硝基化底物。其中绝大多数代表新的亚硝基化靶点,包括许多在细胞内稳态和信号传导中具有关键功能的蛋白质。体外和细胞内的生化及功能实验验证了蛋白质组学结果,并进一步表明硫氧还蛋白在诱导型一氧化氮合酶和蛋白激酶MEK1的去亚硝基化和激活中发挥作用。我们的发现有助于更好地理解巨噬细胞S-亚硝基蛋白质组以及硫氧还蛋白介导的去亚硝基化在一氧化氮信号传导中的作用。本文所述方法可能被证明在鉴定和探索各种生理和病理生理条件下的亚硝基蛋白质组方面普遍有用。