Suppr超能文献

视线转移和注视主导着行走中猫咪的注视行为。

Gaze shifts and fixations dominate gaze behavior of walking cats.

作者信息

Rivers T J, Sirota M G, Guttentag A I, Ogorodnikov D A, Shah N A, Beloozerova I N

机构信息

Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.

Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.

出版信息

Neuroscience. 2014 Sep 5;275:477-99. doi: 10.1016/j.neuroscience.2014.06.034. Epub 2014 Jun 26.

Abstract

Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required for successful walking, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5-m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body's speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats' gaze behavior during all locomotor tasks, jointly occupying 62-84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior "gaze stepping". Each gaze shift took gaze to a site approximately 75-80cm in front of the cat, which the cat reached in 0.7-1.2s and 1.1-1.6 strides. Constant gaze occupied only 5-21% of the time cats spent looking at the walking surface.

摘要

视觉对于在复杂环境中的移动很重要。目前人们对其如何用于指导步行动作还了解甚少。我们使用了眼搜索线圈技术,并结合基于主动标记的头部记录系统,来表征猫在不同复杂程度地形上行走时的注视模式:(1)在黑暗中的平面上,此时没有视觉信息可用;(2)在明亮的平面上,此时有视觉信息但成功行走并不需要;(3)沿着水平梯子高度结构化但规则且熟悉的表面行走,这是一项需要视觉引导步行动作的任务;(4)沿着布满许多小石子的路径行走,这是一个每天都不同的不规则结构化表面。三只猫在一条2.5米长的走廊里行走,共分析了958次通过情况。当注视指向行走表面时,注视活动根据沿表面的注视移动速度被细分为四种行为:注视转移(快速移动)、注视固定(无移动)、持续注视(以身体速度移动)和缓慢注视(其余情况)。我们发现,在所有运动任务中,注视转移和注视固定主导了猫的注视行为,在注视指向表面的时间中共同占比62 - 84%。随着表面视觉复杂性以及对步行动作视觉引导需求的增加,猫看向表面的时间更多,看得更靠近自身,并且在不同注视行为之间切换得更频繁。在两个需要视觉引导的运动任务中时,注视行为主要遵循向前注视转移然后固定的重复循环。我们将这种行为称为“注视步行动作”。每次注视转移会将注视带到猫前方约75 - 80厘米处的一个位置,猫在0.7 - 1.2秒和1.1 - 1.6步幅内到达该位置。持续注视仅占猫看向行走表面时间的5 - 21%。

相似文献

1
Gaze shifts and fixations dominate gaze behavior of walking cats.
Neuroscience. 2014 Sep 5;275:477-99. doi: 10.1016/j.neuroscience.2014.06.034. Epub 2014 Jun 26.
2
Gaze coordination with strides during walking in the cat.
J Physiol. 2019 Nov;597(21):5195-5229. doi: 10.1113/JP278108. Epub 2019 Oct 6.
3
Gaze during visually-guided locomotion in cats.
Behav Brain Res. 2003 Feb 17;139(1-2):83-96. doi: 10.1016/s0166-4328(02)00096-7.
4
Binocular vision and the control of foot placement during walking in natural terrain.
Sci Rep. 2021 Oct 22;11(1):20881. doi: 10.1038/s41598-021-99846-0.
5
When cats need to see to step accurately?
J Physiol. 2022 Jan;600(1):75-94. doi: 10.1113/JP282255. Epub 2021 Dec 6.
6
Keep your head down: Maintaining gait stability in challenging conditions.
Hum Mov Sci. 2020 Oct;73:102676. doi: 10.1016/j.humov.2020.102676. Epub 2020 Sep 18.
7
Don't watch your step: gaze behavior adapts with practice of a target stepping task.
J Neurophysiol. 2022 Sep 1;128(3):445-454. doi: 10.1152/jn.00155.2022. Epub 2022 Jul 13.
8
How far ahead do we look when required to step on specific locations in the travel path during locomotion?
Exp Brain Res. 2003 Jan;148(1):133-8. doi: 10.1007/s00221-002-1246-y. Epub 2002 Nov 9.
10
Gaze shifts to auditory and visual stimuli in cats.
J Assoc Res Otolaryngol. 2013 Oct;14(5):731-55. doi: 10.1007/s10162-013-0401-4. Epub 2013 Jun 8.

引用本文的文献

1
Activity of cat premotor cortex neurons during visually guided stepping.
J Neurophysiol. 2023 Oct 1;130(4):838-860. doi: 10.1152/jn.00114.2023. Epub 2023 Aug 23.
2
Through Hawks' Eyes: Synthetically Reconstructing the Visual Field of a Bird in Flight.
Int J Comput Vis. 2023;131(6):1497-1531. doi: 10.1007/s11263-022-01733-2. Epub 2023 Mar 2.
3
Signals from posterior parietal area 5 to motor cortex during locomotion.
Cereb Cortex. 2023 Feb 7;33(4):1014-1043. doi: 10.1093/cercor/bhac118.
4
When cats need to see to step accurately?
J Physiol. 2022 Jan;600(1):75-94. doi: 10.1113/JP282255. Epub 2021 Dec 6.
5
Neuronal activity reorganization in motor cortex for successful locomotion after a lesion in the ventrolateral thalamus.
J Neurophysiol. 2022 Jan 1;127(1):56-85. doi: 10.1152/jn.00191.2021. Epub 2021 Nov 3.
6
Gaze coordination with strides during walking in the cat.
J Physiol. 2019 Nov;597(21):5195-5229. doi: 10.1113/JP278108. Epub 2019 Oct 6.
7
The Relationship between Saccades and Locomotion.
J Mov Disord. 2018 Sep;11(3):93-106. doi: 10.14802/jmd.18018. Epub 2018 Aug 9.
8
Head movement during walking in the cat.
Neuroscience. 2016 Sep 22;332:101-20. doi: 10.1016/j.neuroscience.2016.06.031. Epub 2016 Jun 23.
9
Activity of somatosensory-responsive neurons in high subdivisions of SI cortex during locomotion.
J Neurosci. 2015 May 20;35(20):7763-76. doi: 10.1523/JNEUROSCI.3545-14.2015.
10
Distinct Thalamo-Cortical Controls for Shoulder, Elbow, and Wrist during Locomotion.
Front Comput Neurosci. 2013 May 21;7:62. doi: 10.3389/fncom.2013.00062. eCollection 2013.

本文引用的文献

1
Effect of light on the activity of motor cortex neurons during locomotion.
Behav Brain Res. 2013 Aug 1;250:238-50. doi: 10.1016/j.bbr.2013.05.004. Epub 2013 May 13.
2
Optimizing the temporal dynamics of light to human perception.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19828-33. doi: 10.1073/pnas.1213170109. Epub 2012 Nov 12.
3
Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion.
Curr Biol. 2012 Sep 25;22(18):1649-58. doi: 10.1016/j.cub.2012.07.019. Epub 2012 Jul 26.
4
Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping.
J Neurophysiol. 2010 Apr;103(4):2285-300. doi: 10.1152/jn.00360.2009. Epub 2010 Feb 17.
5
Vision, eye movements, and natural behavior.
Vis Neurosci. 2009 Jan-Feb;26(1):51-62. doi: 10.1017/S0952523808080899. Epub 2009 Feb 10.
7
Head stabilization by vestibulocollic reflexes during quadrupedal locomotion in monkey.
J Neurophysiol. 2008 Aug;100(2):763-80. doi: 10.1152/jn.90256.2008. Epub 2008 Jun 18.
8
Neuronal mechanisms of visual stability.
Vision Res. 2008 Sep;48(20):2070-89. doi: 10.1016/j.visres.2008.03.021. Epub 2008 May 29.
9
An intrinsic feed-forward mechanism for vertebrate gaze stabilization.
Curr Biol. 2008 Mar 25;18(6):R241-3. doi: 10.1016/j.cub.2008.02.018.
10
Head fixed field coil system for measuring eye movements in freely moving monkeys.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5567-70. doi: 10.1109/IEMBS.2006.260407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验