Suppr超能文献

猫在行走时的注视与步伐协调。

Gaze coordination with strides during walking in the cat.

机构信息

Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA.

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.

出版信息

J Physiol. 2019 Nov;597(21):5195-5229. doi: 10.1113/JP278108. Epub 2019 Oct 6.

Abstract

KEY POINTS

Vision plays a crucial role in guiding locomotion in complex environments, but the coordination between gaze and stride is not well understood. The coordination of gaze shifts, fixations, constant gaze and slow gaze with strides in cats walking on different surfaces were examined. It was found that gaze behaviours are coordinated with strides even when walking on a flat surface in the complete darkness, occurring in a sequential order during different phases of the stride. During walking on complex surfaces, gaze behaviours are typically more tightly coordinated with strides, particularly at faster speeds, only slightly shifting in phase. These findings indicate that the coordination of gaze behaviours with strides is not vision-driven, but is a part of the whole body locomotion synergy; the visual environment and locomotor task modulate it. The results may be relevant to developing diagnostic tools and rehabilitation approaches for patients with locomotor deficits.

ABSTRACT

Vision plays a crucial role in guiding locomotion in complex environments. However, the coordination between the gaze and stride is not well understood. We investigated this coordination in cats walking on a flat surface in darkness or light, along a horizontal ladder and on a pathway with small stones. We recorded vertical and horizontal eye movements and 3-D head movement, and calculated where gaze intersected the walkway. The coordination of gaze shifts away from the animal, gaze shifts toward, fixations, constant gaze, and slow gaze with strides was investigated. We found that even during walking on the flat surface in the darkness, all gaze behaviours were coordinated with strides. Gaze shifts and slow gaze toward started in the beginning of each forelimb's swing and ended in its second half. Fixations peaked throughout the beginning and middle of swing. Gaze shifts away began throughout the second half of swing of each forelimb and ended when both forelimbs were in stance. Constant gaze and slow gaze away occurred in the beginning of stance. However, not every behaviour occurred during every stride. Light had a small effect. The ladder and stones typically increased the coordination and caused gaze behaviours to occur 3% earlier in the cycle. At faster speeds, the coordination was often tighter and some gaze behaviours occurred 2-16% later in the cycle. The findings indicate that the coordination of gaze with strides is not vision-driven, but is a part of the whole body locomotion synergy; the visual environment and locomotor task modulate it.

摘要

要点

视觉在复杂环境中的导向运动中起着至关重要的作用,但眼球运动和步伐之间的协调关系还没有得到很好的理解。本研究旨在观察猫在不同表面上行走时眼球运动的扫视、注视、固视和慢扫视与步伐之间的协调关系。结果发现,即使在完全黑暗的平坦表面上行走,眼球运动行为也与步伐协调一致,在步伐的不同阶段按顺序发生。在复杂表面上行走时,眼球运动行为通常与步伐更加紧密地协调,尤其是在较快的速度下,相位仅略有变化。这些发现表明,眼球运动行为与步伐的协调不是由视觉驱动的,而是整个身体运动协同的一部分;视觉环境和运动任务对其进行调节。研究结果可能与为运动障碍患者开发诊断工具和康复方法有关。

摘要

视觉在复杂环境中的导向运动中起着至关重要的作用。然而,眼球运动和步伐之间的协调关系还没有得到很好的理解。我们研究了猫在黑暗或光照下的平坦表面、水平梯级和小石径上行走时的协调关系。我们记录了垂直和水平眼球运动以及 3-D 头部运动,并计算了注视点与步道的交点。我们研究了眼球向远处扫视、向目标扫视、注视、固视和慢扫视与步伐之间的协调关系。结果发现,即使在黑暗中行走在平坦表面上,所有的眼球运动行为也都与步伐协调一致。向远处扫视和慢扫视开始于每个前肢摆动的开始,并在其后半部分结束。注视在摆动的开始和中间达到峰值。向远处的扫视开始于每个前肢摆动的后半部分,并在两个前肢都处于支撑阶段时结束。固视和向远处的慢扫视发生在支撑阶段的开始。然而,并不是每个行为都在每个步伐中发生。光照只有很小的影响。梯级和石头通常会增加协调,使眼球运动行为在周期中提前 3%发生。在较快的速度下,协调通常更紧密,一些眼球运动行为在周期中晚 2-16%发生。研究结果表明,眼球运动与步伐的协调不是由视觉驱动的,而是整个身体运动协同的一部分;视觉环境和运动任务对其进行调节。

相似文献

1
Gaze coordination with strides during walking in the cat.
J Physiol. 2019 Nov;597(21):5195-5229. doi: 10.1113/JP278108. Epub 2019 Oct 6.
2
When cats need to see to step accurately?
J Physiol. 2022 Jan;600(1):75-94. doi: 10.1113/JP282255. Epub 2021 Dec 6.
3
Gaze shifts and fixations dominate gaze behavior of walking cats.
Neuroscience. 2014 Sep 5;275:477-99. doi: 10.1016/j.neuroscience.2014.06.034. Epub 2014 Jun 26.
4
Gaze during visually-guided locomotion in cats.
Behav Brain Res. 2003 Feb 17;139(1-2):83-96. doi: 10.1016/s0166-4328(02)00096-7.
5
Binocular vision and the control of foot placement during walking in natural terrain.
Sci Rep. 2021 Oct 22;11(1):20881. doi: 10.1038/s41598-021-99846-0.
6
Selective suppression of the vestibulo-ocular reflex during human locomotion.
J Neurol. 2019 Sep;266(Suppl 1):101-107. doi: 10.1007/s00415-019-09352-7. Epub 2019 May 9.
7
"Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion.
Exp Brain Res. 2002 Mar;143(2):221-30. doi: 10.1007/s00221-001-0983-7. Epub 2002 Jan 10.
8
Strategies for Gaze Stabilization Critically Depend on Locomotor Speed.
Neuroscience. 2019 Jun 1;408:418-429. doi: 10.1016/j.neuroscience.2019.01.025. Epub 2019 Jan 29.
9
Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy.
Neurosci Lett. 1998 Sep 4;253(2):115-8. doi: 10.1016/s0304-3940(98)00625-9.
10
Eye-head coordination for visual cognitive processing.
PLoS One. 2015 Mar 23;10(3):e0121035. doi: 10.1371/journal.pone.0121035. eCollection 2015.

引用本文的文献

1
Activity of cat premotor cortex neurons during visually guided stepping.
J Neurophysiol. 2023 Oct 1;130(4):838-860. doi: 10.1152/jn.00114.2023. Epub 2023 Aug 23.
2
Roles for cerebellum and subsumption architecture in central pattern generation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Mar;210(2):315-324. doi: 10.1007/s00359-023-01634-w. Epub 2023 May 2.
3
Signals from posterior parietal area 5 to motor cortex during locomotion.
Cereb Cortex. 2023 Feb 7;33(4):1014-1043. doi: 10.1093/cercor/bhac118.
4
When cats need to see to step accurately?
J Physiol. 2022 Jan;600(1):75-94. doi: 10.1113/JP282255. Epub 2021 Dec 6.
5
Neuronal activity reorganization in motor cortex for successful locomotion after a lesion in the ventrolateral thalamus.
J Neurophysiol. 2022 Jan 1;127(1):56-85. doi: 10.1152/jn.00191.2021. Epub 2021 Nov 3.
6
Contribution of the ventrolateral thalamus to the locomotion-related activity of motor cortex.
J Neurophysiol. 2020 Nov 1;124(5):1480-1504. doi: 10.1152/jn.00253.2020. Epub 2020 Aug 12.

本文引用的文献

1
Brain Stem Neural Circuits of Horizontal and Vertical Saccade Systems and their Frame of Reference.
Neuroscience. 2018 Nov 10;392:281-328. doi: 10.1016/j.neuroscience.2018.08.027. Epub 2018 Sep 5.
2
Gaze and the Control of Foot Placement When Walking in Natural Terrain.
Curr Biol. 2018 Apr 23;28(8):1224-1233.e5. doi: 10.1016/j.cub.2018.03.008. Epub 2018 Apr 12.
3
A New Perspective on Predictive Motor Signaling.
Curr Biol. 2018 Mar 5;28(5):R232-R243. doi: 10.1016/j.cub.2018.01.033.
4
Visual regulation of gait: Zeroing in on a solution to the complex terrain problem.
J Exp Psychol Hum Percept Perform. 2017 Oct;43(10):1773-1790. doi: 10.1037/xhp0000435.
5
The critical phase for visual control of human walking over complex terrain.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6720-E6729. doi: 10.1073/pnas.1611699114. Epub 2017 Jul 24.
6
Strategies for obstacle avoidance during walking in the cat.
J Neurophysiol. 2017 Aug 1;118(2):817-831. doi: 10.1152/jn.00033.2017. Epub 2017 Mar 29.
7
Head movement during walking in the cat.
Neuroscience. 2016 Sep 22;332:101-20. doi: 10.1016/j.neuroscience.2016.06.031. Epub 2016 Jun 23.
8
Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.
J Neurophysiol. 2015 Nov;114(5):2682-702. doi: 10.1152/jn.00510.2014. Epub 2015 Sep 9.
10
Activity of somatosensory-responsive neurons in high subdivisions of SI cortex during locomotion.
J Neurosci. 2015 May 20;35(20):7763-76. doi: 10.1523/JNEUROSCI.3545-14.2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验