Kota Pradeep, Buchner Ginka, Chakraborty Hirak, Dang Yan L, He Hong, Garcia Guilherme J M, Kubelka Jan, Gentzsch Martina, Stutts M Jackson, Dokholyan Nikolay V
Departments of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599; Departments of Molecular and Cellular Biophysics, and University of North Carolina, Chapel Hill, North Carolina 27599.
Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, and.
J Biol Chem. 2014 Aug 15;289(33):23029-23042. doi: 10.1074/jbc.M114.570952. Epub 2014 Jun 28.
The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr(370) in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.
上皮钠通道(ENaC)在α和γ亚基细胞外结构域的特定片段进行内蛋白水解切割后被激活。切割在膜插入之前由细胞内蛋白酶完成,而一旦ENaC位于细胞表面,则由表面表达的或细胞外可溶性蛋白酶完成。这些切割事件通过一种未知的变构机制部分受细胞内信号传导调节。在这里,我们结合计算和实验技术表明,γ-ENaC的细胞内N末端在与磷酸肌醇相互作用时会发生二级结构转变。通过对存在和不存在磷脂酰肌醇4,5-二磷酸(PIP2)时N末端的从头折叠模拟,我们发现PIP2增加了γ-ENaC N末端的α螺旋倾向。电生理学和突变实验表明,γ-ENaC N末端高度保守的赖氨酸簇调节γ-ENaC细胞外切割位点的可及性。我们还表明,降低PIP2或增强泛素化的条件会大幅限制γ-ENaC细胞外结构域对蛋白酶的可及性。此外,ENaC蛋白水解的变构控制效率取决于γ-ENaC中的Tyr(370)。我们的研究结果提供了一种由N末端调节的ENaC激活的变构机制,并揭示了通道和受体激活的潜在一般机制。