From the Program in Molecular and Cellular Biophysics.
Curriculum in Bioinformatics and Computational Biology.
J Biol Chem. 2018 Mar 9;293(10):3675-3684. doi: 10.1074/jbc.RA117.000604. Epub 2018 Jan 22.
The epithelial sodium channel (ENaC) mediates sodium absorption in lung, kidney, and colon epithelia. Channels in the ENaC/degenerin family possess an extracellular region that senses physicochemical changes in the extracellular milieu and allosterically regulates the channel opening. Proteolytic cleavage activates the ENaC opening, by the removal of specific segments in the finger domains of the α- and γ ENaC-subunits. Cleavage causes perturbations in the extracellular region that propagate to the channel gate. However, it is not known how the channel structure mediates the propagation of activation signals through the extracellular sensing domains. Here, to identify the structure-function determinants that mediate allosteric ENaC activation, we performed MD simulations, thiol modification of residues substituted by cysteine, and voltage-clamp electrophysiology recordings. Our simulations of an ENaC heterotetramer, αβαγ, in the proteolytically cleaved and uncleaved states revealed structural pathways in the α-subunit that are responsible for ENaC proteolytic activation. To validate these findings, we performed site-directed mutagenesis to introduce cysteine substitutions in the extracellular domains of the α-, β-, and γ ENaC-subunits. Insertion of a cysteine at the α-subunit Glu site, predicted to stabilize a closed state of ENaC, inhibited ENaC basal activity and retarded the kinetics of proteolytic activation by 2-fold. Our results suggest that the lower palm domain of αENaC is essential for ENaC activation. In conclusion, our integrated computational and experimental approach suggests key structure-function determinants for ENaC proteolytic activation and points toward a mechanistic model for the allosteric communication in the extracellular domains of the ENaC/degenerin family channels.
上皮钠离子通道 (ENaC) 介导肺、肾和结肠上皮细胞的钠离子吸收。ENaC/degenerin 家族的通道具有一个细胞外区域,该区域感知细胞外环境中的物理化学变化,并通过变构调节通道开放。蛋白水解切割通过去除 α 和 γ ENaC 亚基的指状结构域中的特定片段来激活 ENaC 开放。切割导致细胞外区域的扰动,这些扰动传播到通道门。然而,目前尚不清楚通道结构如何介导激活信号通过细胞外感应结构域的传播。在这里,为了确定介导变构 ENaC 激活的结构-功能决定因素,我们进行了 MD 模拟、半胱氨酸取代残基的巯基修饰和电压钳电生理学记录。我们对切割和未切割状态下的 ENaC 异四聚体 αβαγ 的模拟揭示了 α 亚基中负责 ENaC 蛋白水解激活的结构途径。为了验证这些发现,我们进行了定点突变,在 α、β 和 γ ENaC 亚基的细胞外结构域中引入半胱氨酸取代。在预测稳定 ENaC 关闭状态的 α 亚基 Glu 位点插入半胱氨酸,抑制 ENaC 的基础活性,并使蛋白水解激活的动力学减慢 2 倍。我们的结果表明,αENaC 的较低手掌域对于 ENaC 的激活是必需的。总之,我们的综合计算和实验方法为 ENaC 蛋白水解激活的关键结构-功能决定因素提供了线索,并为 ENaC/degenerin 家族通道细胞外结构域中的变构通讯提供了一个机制模型。