Mah Yee-Haur, Husain Masud, Rees Geraint, Nachev Parashkev
1 Institute of Neurology, UCL, London, WC1N 3BG, UK.
1 Institute of Neurology, UCL, London, WC1N 3BG, UK2 Department of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK3 Institute of Cognitive Neuroscience, UCL, London WC1N 3AR, UK.
Brain. 2014 Sep;137(Pt 9):2522-31. doi: 10.1093/brain/awu164. Epub 2014 Jun 28.
Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant. Positively, we show that novel machine learning techniques employing high-dimensional inference can nonetheless accurately converge on the true locus. We conclude that current inferences about human brain function and deficits based on lesion mapping must be re-evaluated with methodology that adequately captures the high-dimensional structure of lesion data.
我们对健康和患病人类大脑解剖结构的认识在很大程度上依赖于对患有局灶性脑损伤患者的研究。从历史上看,这是绘制脑功能的第一种方法,至今它可能仍是最强大的方法,它确定了任何假定的神经基质对于特定功能或缺陷的必要性。然而,强大的推理能力也伴随着一个关键的弱点:如果没有更有力的替代方法,任何一致性误差都不容易被发现。这种误差的一个迄今未被研究的来源是局灶性损伤模式的高维分布结构,特别是在缺血性损伤中——这是病变-缺陷研究中最常见的病因——其解剖结构自然地由血管树的结构塑造。这种分布非常复杂,以至于对常规规模的病变数据集进行分析无法阐明其结构,使我们对这种误差的存在与否一无所知。为了研究这个关键问题,我们收集了已知最大的一组局灶性脑损伤(n = 581),这些损伤来自未经挑选的急性缺血性损伤患者(平均年龄 = 62.3岁,标准差 = 17.8,男女比例 = 0.547),通过扩散加权磁共振成像进行可视化,并使用经过验证的自动病变分割程序进行处理。对这些数据的高维分析揭示了损伤的多变量模式中存在一种隐藏的偏差,这种偏差会持续扭曲病变-缺陷图谱,将推断的关键区域从其真实位置移位,其方式难以通过重复来察觉。对这种定位错误大小的量化表明,过去用传统推理方法估计的病变-缺陷关系可能会有显著移位,移位幅度取决于未知的潜在病变-缺陷关系本身。因此,过去的研究无法进行追溯校正,除非有新知识使其变得多余。积极的一面是,我们表明采用高维推理的新型机器学习技术仍然可以准确地收敛到真实位置。我们得出结论,当前基于病变图谱对人类脑功能和缺陷的推断必须用能够充分捕捉病变数据高维结构的方法重新评估。