J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; UCL Queen Square Institute of Neurology, University College London, London, UK.
UCL Queen Square Institute of Neurology, University College London, London, UK.
Cortex. 2021 Dec;145:1-12. doi: 10.1016/j.cortex.2021.09.007. Epub 2021 Oct 2.
Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models-for individual prediction or population-level inference-commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke-N = 1333-here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure-outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.
大脑的功能组织和缺血损伤的结构分布。传统的结果模型(用于个体预测或群体推断)通常忽略了这种复杂性,除了病变体积等简单特征外,不考虑解剖学的变化。这为模型所能达到的最大保真度设定了一个硬性限制。高维方法可以克服这个问题,但仅在非常大的数据规模上才可行。利用已发表的最大规模的急性中风解剖注册成像数据集之一(N=1333),我们使用非线性降维技术,从缺血损伤的解剖模式中得出简洁的潜在表示形式,将其聚集为 21 个不同的直观类别。我们将其最大预测性能与更简单的低维表示形式和更复杂的高维表示形式进行了比较,使用了多个经验启发式的分布式结构-结果关系的真实模型。我们表明,与传统的低维方法相比,我们的表示形式可以大大提高预测保真度,但低于高维框架所能达到的水平。在需要描述简单性的情况下,例如在临床护理或规模较小的研究试验中,我们提出的表示形式可以说是紧凑性和保真度之间的有利折衷。