Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of the Chinese Academy of Sciences, Beijing, 100039, China.
Plant J. 2014 Sep;79(6):1052-64. doi: 10.1111/tpj.12606. Epub 2014 Jul 31.
The unicellular green algae Chlamydomonas reinhardtii is a classic model for the study of flagella/cilia and photosynthesis, and it has recently been exploited for producing biopharmaceuticals and biofuel. Due to the low frequency of homologous recombination, reverse genetic manipulation in Chlamydomonas relies mainly on miRNA- and siRNA-based knockdown methods. However, the difficulty in constructing artificial miRNA vectors, laborious screening of knockdown transformants, and undesired epigenetic silencing of exogenous miRNA constructs limit their application. We have established a one-step procedure to construct an artificial miRNA precursor by annealing eight oligonucleotides of approximately 40 nucleotides. In the final construct, the Gaussia princeps luciferase gene (G-Luc) is positioned between the promoter and the artificial miRNA precursor so that knockdown strains may quickly be screened by visualizing luciferase luminescence using a photon-counting camera. Furthermore, the luciferase activity of transformants correlates with the knockdown level of two test target proteins: the chloroplast protein VIPP1 (vesicle inducing protein in plastids 1) and the flagellar protein CDPK3 (calcium-dependent protein kinase 3). Adding an intron from RBCS2 (ribulose bisphosphate carboxylase/oxygenase small subunit 2) to the miRNA construct enhanced both the luciferase activity and the miRNA knockdown efficiency. A second miRNA vector incorporated the promoter of the nitrate reductase gene to allow inducible expression of the artificial miRNA. These vectors will facilitate application of the artificial miRNA and provide tools for studying the mechanism of epigenetics in Chlamydomonas, and may also be adapted for use in other model organisms.
单细胞绿藻莱茵衣藻是研究鞭毛/纤毛和光合作用的经典模式生物,最近它被用于生产生物制药和生物燃料。由于同源重组的频率较低,莱茵衣藻的反向遗传学操作主要依赖于 miRNA 和 siRNA 介导的敲低方法。然而,构建人工 miRNA 载体的困难、敲低转化体的繁琐筛选以及对外源 miRNA 构建体的非期望表观遗传沉默限制了它们的应用。我们已经建立了一种一步法来构建人工 miRNA 前体,方法是退火大约 40 个核苷酸的 8 个寡核苷酸。在最终的构建体中,Gaussia princeps 荧光素酶基因(G-Luc)位于启动子和人工 miRNA 前体之间,因此可以通过使用光子计数相机可视化荧光素酶发光来快速筛选敲低株。此外,转化体的荧光素酶活性与两个测试靶蛋白的敲低水平相关:叶绿体蛋白 VIPP1(质体中囊泡诱导蛋白 1)和鞭毛蛋白 CDPK3(钙依赖性蛋白激酶 3)。在 miRNA 构建体中添加来自 RBCS2(核酮糖 1,5-二磷酸羧化酶/加氧酶小亚基 2)的内含子,提高了荧光素酶活性和 miRNA 敲低效率。第二个 miRNA 载体整合了硝酸盐还原酶基因的启动子,允许人工 miRNA 的诱导表达。这些载体将促进人工 miRNA 的应用,并为研究莱茵衣藻表观遗传学机制提供工具,也可能适应于其他模式生物的应用。