Suppr超能文献

时变静息态功能连接的神经基础。

The neural basis of time-varying resting-state functional connectivity.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology , Atlanta, Georgia .

出版信息

Brain Connect. 2014 Dec;4(10):769-79. doi: 10.1089/brain.2014.0250.

Abstract

Dynamic network analysis based on resting-state magnetic resonance imaging (rsMRI) is a fairly new and potentially powerful tool for neuroscience and clinical research. Dynamic analysis can be sensitive to changes that occur in psychiatric or neurologic disorders and can detect variations related to performance on individual trials in healthy subjects. However, the appearance of time-varying connectivity can also arise in signals that share no temporal information, complicating the interpretation of dynamic functional connectivity studies. Researchers have begun utilizing simultaneous imaging and electrophysiological recording to elucidate the neural basis of the networks and their variability in animals and in humans. In this article, we review findings that link changes in electrically recorded brain states to changes in the networks obtained with rsMRI and discuss some of the challenges inherent in interpretation of these studies. The literature suggests that multiple brain processes may contribute to the dynamics observed, and we speculate that it may be possible to separate particular aspects of the rsMRI signal to enhance sensitivity to certain types of neural activity, providing new tools for basic neuroscience and clinical research.

摘要

基于静息态磁共振成像(rsMRI)的动态网络分析是神经科学和临床研究中一种相当新的、有潜力的强大工具。动态分析对精神或神经障碍中发生的变化敏感,并可以检测与健康受试者个体试验表现相关的变化。然而,在没有时间信息共享的信号中也会出现时变连接性,这使得动态功能连接研究的解释变得复杂。研究人员已经开始利用同时进行的成像和电生理记录来阐明网络的神经基础及其在动物和人类中的可变性。在本文中,我们回顾了将电记录的脑状态变化与 rsMRI 获得的网络变化联系起来的研究结果,并讨论了这些研究解释中固有的一些挑战。文献表明,多种脑过程可能有助于观察到的动力学,我们推测,有可能将 rsMRI 信号的特定方面分离出来,以提高对某些类型的神经活动的敏感性,为基础神经科学和临床研究提供新的工具。

相似文献

1
The neural basis of time-varying resting-state functional connectivity.
Brain Connect. 2014 Dec;4(10):769-79. doi: 10.1089/brain.2014.0250.
2
Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
Brain Connect. 2016 Mar;6(2):122-35. doi: 10.1089/brain.2014.0336. Epub 2015 Oct 13.
3
Reliability of Magnetoencephalography and High-Density Electroencephalography Resting-State Functional Connectivity Metrics.
Brain Connect. 2019 Sep;9(7):539-553. doi: 10.1089/brain.2019.0662. Epub 2019 Jun 26.
4
Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques.
Hum Brain Mapp. 2013 Sep;34(9):2154-77. doi: 10.1002/hbm.22058. Epub 2012 Mar 22.
5
Infraslow Electroencephalographic and Dynamic Resting State Network Activity.
Brain Connect. 2017 Jun;7(5):265-280. doi: 10.1089/brain.2017.0492.
6
Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity.
Neuroimage. 2016 Jun;133:331-340. doi: 10.1016/j.neuroimage.2016.03.033. Epub 2016 Mar 21.
7
Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution.
Neuroimage. 2012 Feb 15;59(4):3909-21. doi: 10.1016/j.neuroimage.2011.11.005. Epub 2011 Nov 9.
8
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
J Neurosci. 2016 Jun 1;36(22):6030-40. doi: 10.1523/JNEUROSCI.0187-16.2016.
9
Dynamics of large-scale electrophysiological networks: A technical review.
Neuroimage. 2018 Oct 15;180(Pt B):559-576. doi: 10.1016/j.neuroimage.2017.10.003. Epub 2017 Oct 4.
10
Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
Neuroimage. 2018 Jun;173:127-145. doi: 10.1016/j.neuroimage.2018.02.036. Epub 2018 Feb 21.

引用本文的文献

1
Rest assured: Dynamic functional connectivity and the baseline state of the human brain.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00365. eCollection 2024.
2
Consistency of resting-state correlations between fMRI networks and EEG band power.
Imaging Neurosci (Camb). 2025 Jun 18;3. doi: 10.1162/IMAG.a.37. eCollection 2025.
3
Challenges in the measurement and interpretation of dynamic functional connectivity.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00366. eCollection 2024.
5
Elucidating hemodynamics and neuro-glio-vascular signaling using rodent fMRI.
Trends Neurosci. 2025 Mar;48(3):227-241. doi: 10.1016/j.tins.2024.12.010. Epub 2025 Jan 21.
6
Peripheral contributions to resting state brain dynamics.
Nat Commun. 2024 Dec 30;15(1):10820. doi: 10.1038/s41467-024-55064-6.
7
Infraslow dynamic patterns in human cortical networks track a spectrum of external to internal attention.
bioRxiv. 2024 Apr 23:2024.04.22.590625. doi: 10.1101/2024.04.22.590625.
8
Mapping and comparing fMRI connectivity networks across species.
Commun Biol. 2023 Dec 7;6(1):1238. doi: 10.1038/s42003-023-05629-w.
10
Altered dynamic functional connectivity associates with post-traumatic stress disorder.
Brain Imaging Behav. 2023 Jun;17(3):294-305. doi: 10.1007/s11682-023-00760-y. Epub 2023 Feb 24.

本文引用的文献

1
Phase-amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: relationship to resting state fMRI.
Front Integr Neurosci. 2014 May 27;8:41. doi: 10.3389/fnint.2014.00041. eCollection 2014.
2
Common intrinsic connectivity states among posteromedial cortex subdivisions: Insights from analysis of temporal dynamics.
Neuroimage. 2014 Jun;93 Pt 1(0 1):124-37. doi: 10.1016/j.neuroimage.2014.02.014. Epub 2014 Feb 20.
4
Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
Neuroimage. 2014 Jan 1;84:1018-31. doi: 10.1016/j.neuroimage.2013.09.029. Epub 2013 Sep 23.
5
6
Neural correlates of time-varying functional connectivity in the rat.
Neuroimage. 2013 Dec;83:826-36. doi: 10.1016/j.neuroimage.2013.07.036. Epub 2013 Jul 19.
7
Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
Neuroimage. 2013 Dec;83:937-50. doi: 10.1016/j.neuroimage.2013.07.019. Epub 2013 Jul 18.
9
Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10300-5. doi: 10.1073/pnas.1217691110. Epub 2013 Jun 3.
10
Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage. 2013 Oct 15;80:360-78. doi: 10.1016/j.neuroimage.2013.05.079. Epub 2013 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验