Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology , Atlanta, Georgia .
Brain Connect. 2014 Dec;4(10):769-79. doi: 10.1089/brain.2014.0250.
Dynamic network analysis based on resting-state magnetic resonance imaging (rsMRI) is a fairly new and potentially powerful tool for neuroscience and clinical research. Dynamic analysis can be sensitive to changes that occur in psychiatric or neurologic disorders and can detect variations related to performance on individual trials in healthy subjects. However, the appearance of time-varying connectivity can also arise in signals that share no temporal information, complicating the interpretation of dynamic functional connectivity studies. Researchers have begun utilizing simultaneous imaging and electrophysiological recording to elucidate the neural basis of the networks and their variability in animals and in humans. In this article, we review findings that link changes in electrically recorded brain states to changes in the networks obtained with rsMRI and discuss some of the challenges inherent in interpretation of these studies. The literature suggests that multiple brain processes may contribute to the dynamics observed, and we speculate that it may be possible to separate particular aspects of the rsMRI signal to enhance sensitivity to certain types of neural activity, providing new tools for basic neuroscience and clinical research.
基于静息态磁共振成像(rsMRI)的动态网络分析是神经科学和临床研究中一种相当新的、有潜力的强大工具。动态分析对精神或神经障碍中发生的变化敏感,并可以检测与健康受试者个体试验表现相关的变化。然而,在没有时间信息共享的信号中也会出现时变连接性,这使得动态功能连接研究的解释变得复杂。研究人员已经开始利用同时进行的成像和电生理记录来阐明网络的神经基础及其在动物和人类中的可变性。在本文中,我们回顾了将电记录的脑状态变化与 rsMRI 获得的网络变化联系起来的研究结果,并讨论了这些研究解释中固有的一些挑战。文献表明,多种脑过程可能有助于观察到的动力学,我们推测,有可能将 rsMRI 信号的特定方面分离出来,以提高对某些类型的神经活动的敏感性,为基础神经科学和临床研究提供新的工具。