Zhou Xiaoqing Alice, Jiang Yuanyuan, Gomez-Cid Lidia, Yu Xin
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
Trends Neurosci. 2025 Mar;48(3):227-241. doi: 10.1016/j.tins.2024.12.010. Epub 2025 Jan 21.
Despite extensive functional mapping studies using rodent functional magnetic resonance imaging (fMRI), interpreting the fMRI signals in relation to their neuronal origins remains challenging due to the hemodynamic nature of the response. Ultra high-resolution rodent fMRI, beyond merely enhancing spatial specificity, has revealed vessel-specific hemodynamic responses, highlighting the distinct contributions of intracortical arterioles and venules to fMRI signals. This 'single-vessel' fMRI approach shifts the paradigm of rodent fMRI, enabling its integration with other neuroimaging modalities to investigate neuro-glio-vascular (NGV) signaling underlying a variety of brain dynamics. Here, we review the emerging trend of combining multimodal fMRI with opto/chemogenetic neuromodulation and genetically encoded biosensors for cellular and circuit-specific recording, offering unprecedented opportunities for cross-scale brain dynamic mapping in rodent models.
尽管使用啮齿动物功能磁共振成像(fMRI)进行了广泛的功能映射研究,但由于反应的血液动力学性质,将fMRI信号与其神经元起源相关联进行解释仍然具有挑战性。超高分辨率啮齿动物fMRI不仅增强了空间特异性,还揭示了血管特异性血液动力学反应,突出了皮质内小动脉和小静脉对fMRI信号的不同贡献。这种“单血管”fMRI方法改变了啮齿动物fMRI的范式,使其能够与其他神经成像方式相结合,以研究各种脑动力学背后的神经-胶质-血管(NGV)信号传导。在这里,我们回顾了将多模态fMRI与光/化学遗传神经调节和基因编码生物传感器相结合以进行细胞和回路特异性记录的新趋势,这为啮齿动物模型中的跨尺度脑动力学映射提供了前所未有的机会。