Suppr超能文献

估计复发事件中心效应的方法。

Methods for Estimating Center Effects on Recurrent Events.

作者信息

Liu Dandan, Kalbfleisch John D, Schaubel Douglas E

机构信息

Department of Biostatistics, Vanderbilt University School of Medicine 1161 21st Avenue South, Nashville, TN 37232, USA

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, 48109-2029 U.S.A.

出版信息

Stat Biosci. 2014 May 1;6(1):19-37. doi: 10.1007/s12561-012-9075-4.

Abstract

In this article, we develop methods for quantifying center effects with respect to recurrent event data. In the models of interest, center effects are assumed to act multiplicatively on the recurrent event rate function. When the number of centers is large, traditional estimation methods that treat centers as categorical variables have many parameters and are sometimes not feasible to implement, especially with large numbers of distinct recurrent event times. We propose a new estimation method for center effects which avoids including indicator variables for centers. We then show that center effects can be consistently estimated by the center-specific ratio of observed to expected cumulative numbers of events. We also consider the case where the recurrent event sequence can be stopped permanently by a terminating event. Large sample results are developed for the proposed estimators. We assess the finite-sample properties of the proposed estimators through simulation studies. The method is then applied to national hospital admissions data for end stage renal disease patients.

摘要

在本文中,我们开发了针对复发事件数据量化中心效应的方法。在感兴趣的模型中,假定中心效应以乘法方式作用于复发事件率函数。当中心数量众多时,将中心视为分类变量的传统估计方法会有许多参数,并且有时难以实施,尤其是在有大量不同复发事件时间的情况下。我们提出了一种用于中心效应的新估计方法,该方法避免纳入中心的指示变量。然后我们表明,中心效应可以通过事件的观察累积数与期望累积数的中心特定比率来一致地估计。我们还考虑了复发事件序列可因终止事件而永久停止的情况。针对所提出的估计量推导了大样本结果。我们通过模拟研究评估所提出估计量的有限样本性质。然后将该方法应用于终末期肾病患者的全国医院入院数据。

相似文献

1
Methods for Estimating Center Effects on Recurrent Events.
Stat Biosci. 2014 May 1;6(1):19-37. doi: 10.1007/s12561-012-9075-4.
2
Estimating treatment effects on the marginal recurrent event mean in the presence of a terminating event.
Lifetime Data Anal. 2010 Oct;16(4):451-77. doi: 10.1007/s10985-009-9149-x. Epub 2010 Jan 10.
3
Flexible estimation of differences in treatment-specific recurrent event means in the presence of a terminating event.
Biometrics. 2009 Sep;65(3):753-61. doi: 10.1111/j.1541-0420.2008.01157.x. Epub 2008 Nov 13.
4
Semiparametric Transformation Rate Model for Recurrent Event Data.
Stat Biosci. 2011 Dec 1;3(2):187-207. doi: 10.1007/s12561-011-9043-4.
5
An estimating function approach to the analysis of recurrent and terminal events.
Biometrics. 2013 Jun;69(2):366-74. doi: 10.1111/biom.12025. Epub 2013 May 7.
6
Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data.
J Am Stat Assoc. 2004 Dec;99(468):1153-1165. doi: 10.1198/016214504000001033.
7
Semiparametric methods for clustered recurrent event data.
Lifetime Data Anal. 2005 Sep;11(3):405-25. doi: 10.1007/s10985-005-2970-y.
8
Additive-multiplicative rates model for recurrent events.
Lifetime Data Anal. 2010 Jul;16(3):353-73. doi: 10.1007/s10985-010-9160-2. Epub 2010 Mar 14.
9
A semiparametric additive rates model for recurrent event data.
Lifetime Data Anal. 2006 Dec;12(4):389-406. doi: 10.1007/s10985-006-9017-x. Epub 2006 Sep 20.
10
Conditional modeling of recurrent event data with terminal event.
Lifetime Data Anal. 2025 Jan;31(1):187-204. doi: 10.1007/s10985-024-09637-8. Epub 2024 Oct 12.

引用本文的文献

1
Clustering of recurrent events data.
J Appl Stat. 2025 Jan 28;52(11):2031-2059. doi: 10.1080/02664763.2025.2452966. eCollection 2025.
2
Statistical analysis of clustered mixed recurrent-event data with application to a cancer survivor study.
Lifetime Data Anal. 2020 Oct;26(4):820-832. doi: 10.1007/s10985-020-09500-6. Epub 2020 Jul 12.

本文引用的文献

1
Semiparametric analysis of correlated recurrent and terminal events.
Biometrics. 2007 Mar;63(1):78-87. doi: 10.1111/j.1541-0420.2006.00677.x.
2
Semiparametric methods for clustered recurrent event data.
Lifetime Data Anal. 2005 Sep;11(3):405-25. doi: 10.1007/s10985-005-2970-y.
3
Analysis of clustered recurrent event data with application to hospitalization rates among renal failure patients.
Biostatistics. 2005 Jul;6(3):404-19. doi: 10.1093/biostatistics/kxi018. Epub 2005 Apr 14.
4
Modelling clustered survival data from multicentre clinical trials.
Stat Med. 2004 Feb 15;23(3):369-88. doi: 10.1002/sim.1599.
5
Adjustments for center in multicenter studies: an overview.
Ann Intern Med. 2001 Jul 17;135(2):112-23. doi: 10.7326/0003-4819-135-2-200107170-00012.
6
Strategies for comparing treatments on a binary response with multi-centre data.
Stat Med. 2000 Apr 30;19(8):1115-39. doi: 10.1002/(sici)1097-0258(20000430)19:8<1115::aid-sim408>3.0.co;2-x.
7
Multi-centre trial analysis revisited.
Stat Med. 1998;17(15-16):1779-97; discussion 1799-800. doi: 10.1002/(sici)1097-0258(19980815/30)17:15/16<1779::aid-sim979>3.0.co;2-7.
8
Marginal analysis of recurrent events and a terminating event.
Stat Med. 1997 Apr 30;16(8):911-24. doi: 10.1002/(sici)1097-0258(19970430)16:8<911::aid-sim544>3.0.co;2-i.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验