Suppr超能文献

用于复发事件数据的半参数加法率模型。

A semiparametric additive rates model for recurrent event data.

作者信息

Schaubel Douglas E, Zeng Donglin, Cai Jianwen

机构信息

Department of Biostatistics, University of Michigan, M4039, SPH2, Ann Arbor, MI 48109-2029, USA.

出版信息

Lifetime Data Anal. 2006 Dec;12(4):389-406. doi: 10.1007/s10985-006-9017-x. Epub 2006 Sep 20.

Abstract

Recurrent event data often arise in biomedical studies, with examples including hospitalizations, infections, and treatment failures. In observational studies, it is often of interest to estimate the effects of covariates on the marginal recurrent event rate. The majority of existing rate regression methods assume multiplicative covariate effects. We propose a semiparametric model for the marginal recurrent event rate, wherein the covariates are assumed to add to the unspecified baseline rate. Covariate effects are summarized by rate differences, meaning that the absolute effect on the rate function can be determined from the regression coefficient alone. We describe modifications of the proposed method to accommodate a terminating event (e.g., death). Proposed estimators of the regression parameters and baseline rate are shown to be consistent and asymptotically Gaussian. Simulation studies demonstrate that the asymptotic approximations are accurate in finite samples. The proposed methods are applied to a state-wide kidney transplant data set.

摘要

复发事件数据在生物医学研究中经常出现,例如住院、感染和治疗失败等情况。在观察性研究中,估计协变量对边际复发事件率的影响通常很有意义。现有的大多数率回归方法都假设协变量具有乘法效应。我们提出了一种用于边际复发事件率的半参数模型,其中假设协变量加到未指定的基线率上。协变量效应通过率差来总结,这意味着对率函数的绝对效应可以仅从回归系数确定。我们描述了所提出方法的修改,以适应终止事件(例如死亡)。所提出的回归参数和基线率估计量被证明是一致的且渐近高斯分布。模拟研究表明,渐近近似在有限样本中是准确的。所提出的方法应用于一个全州范围的肾移植数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验