Ye Yining, Kalbfleisch John D, Schaubel Douglas E
Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA.
Biometrics. 2007 Mar;63(1):78-87. doi: 10.1111/j.1541-0420.2006.00677.x.
In clinical and observational studies, recurrent event data (e.g., hospitalization) with a terminal event (e.g., death) are often encountered. In many instances, the terminal event is strongly correlated with the recurrent event process. In this article, we propose a semiparametric method to jointly model the recurrent and terminal event processes. The dependence is modeled by a shared gamma frailty that is included in both the recurrent event rate and terminal event hazard function. Marginal models are used to estimate the regression effects on the terminal and recurrent event processes, and a Poisson model is used to estimate the dispersion of the frailty variable. A sandwich estimator is used to achieve additional robustness. An analysis of hospitalization data for patients in the peritoneal dialysis study is presented to illustrate the proposed method.
在临床和观察性研究中,经常会遇到带有终末事件(如死亡)的复发事件数据(如住院)。在许多情况下,终末事件与复发事件过程密切相关。在本文中,我们提出了一种半参数方法来联合建模复发和终末事件过程。通过一个共享的伽马脆弱性来建模依赖性,该脆弱性同时包含在复发事件率和终末事件风险函数中。使用边际模型来估计对终末和复发事件过程的回归效应,并使用泊松模型来估计脆弱变量的离散度。使用三明治估计器以实现更高的稳健性。给出了腹膜透析研究中患者住院数据的分析,以说明所提出的方法。