Suppr超能文献

马尔可夫切换自回归滑动平均广义自回归条件异方差神经网络模型建模及其在股票收益预测中的应用。

Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

作者信息

Bildirici Melike, Ersin Özgür

机构信息

Yıldız Technical University, Department of Economics, Barbaros Bulvari, Besiktas, 34349 Istanbul, Turkey.

Beykent University, Department of Economics, Ayazağa, Şişli, 34396 Istanbul, Turkey.

出版信息

ScientificWorldJournal. 2014;2014:497941. doi: 10.1155/2014/497941. Epub 2014 Apr 6.

Abstract

The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

摘要

本研究有两个目标。第一个目标是提出一族非线性广义自回归条件异方差(GARCH)模型,将分数积分和非对称幂特性纳入马尔可夫状态转换广义自回归条件异方差(MS-GARCH)过程。本研究的第二个目的是用人工神经网络增强MS-GARCH类型模型,以利用其通用逼近特性来提高预测精度。因此,所提出的马尔可夫状态转换MS-自回归移动平均(MS-ARMA)-分数积分广义自回归条件异方差(FIGARCH)、非对称幂广义自回归条件异方差(APGARCH)和分数积分非对称幂广义自回归条件异方差(FIAPGARCH)过程进一步用多层感知器(MLP)、递归神经网络(Recurrent NN)和混合神经网络(Hybrid NN)类型的神经网络进行增强。MS-ARMA-GARCH族和MS-ARMA-GARCH-NN族被用于对新兴市场伊斯坦布尔股票指数(ISE100)的日股票收益率进行建模。预测精度根据平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)误差准则以及迪博尔德-马里亚诺(Diebold-Mariano)等预测精度检验来评估。结果表明,格雷(Gray)的MS-GARCH模型的分数积分和非对称幂对应模型给出了有前景的结果,而基于神经网络的对应模型获得了最佳结果。此外,在所分析的模型中,基于混合MLP和递归神经网络的模型,即MS-ARMA-FIAPGARCH-混合MLP和MS-ARMA-FIAPGARCH-RNN,相对于基准单状态GARCH模型,以及相对于格雷的MS-GARCH模型,提供了最佳的预测性能。因此,这些模型在各种经济应用中很有前景。

相似文献

8
A network autoregressive model with GARCH effects and its applications.带 GARCH 效应的网络自回归模型及其应用。
PLoS One. 2021 Jul 29;16(7):e0255422. doi: 10.1371/journal.pone.0255422. eCollection 2021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验