Dept. Applied Mathematics, National University of Kaohsiung, Kaohsiung, Taiwan.
Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan.
PLoS One. 2021 Jul 29;16(7):e0255422. doi: 10.1371/journal.pone.0255422. eCollection 2021.
In this study, a network autoregressive model with GARCH effects, denoted by NAR-GARCH, is proposed to depict the return dynamics of stock market indices. A GARCH filter is employed to marginally remove the GARCH effects of each index, and the NAR model with the Granger causality test and Pearson's correlation test with sharp price movements is used to capture the joint effects caused by other indices with the most updated market information. The NAR-GARCH model is designed to depict the joint effects of nonsynchronous multiple time series in an easy-to-implement and effective way. The returns of 20 global stock indices from 2006 to 2020 are employed for our empirical investigation. The numerical results reveal that the NAR-GARCH model has satisfactory performance in both fitting and prediction for the 20 stock indices, especially when a market index has strong upward or downward movements.
在这项研究中,我们提出了一种具有 GARCH 效应的网络自回归模型,记为 NAR-GARCH,用于描述股票市场指数的收益动态。我们使用 GARCH 滤波器来边际去除每个指数的 GARCH 效应,然后使用具有格兰杰因果检验和具有急剧价格波动的皮尔逊相关检验的 NAR 模型,利用最新的市场信息来捕捉其他指数引起的联合效应。NAR-GARCH 模型旨在以一种易于实现且有效的方式描述非同步多时间序列的联合效应。我们对 2006 年至 2020 年 20 个全球股票指数的收益进行了实证研究。数值结果表明,NAR-GARCH 模型在 20 个股票指数的拟合和预测方面都具有令人满意的性能,尤其是当某个市场指数出现强烈的上涨或下跌趋势时。