Suppr超能文献

用于图像分类的上下文感知和局部性约束编码

Context-aware and locality-constrained coding for image categorization.

作者信息

Xiao Wenhua, Wang Bin, Liu Yu, Bao Weidong, Zhang Maojun

机构信息

College of Information System and Management, National University of Defense Technology, Changsha, Hunan 410073, China.

出版信息

ScientificWorldJournal. 2014;2014:632871. doi: 10.1155/2014/632871. Epub 2014 Mar 18.

Abstract

Improving the coding strategy for BOF (Bag-of-Features) based feature design has drawn increasing attention in recent image categorization works. However, the ambiguity in coding procedure still impedes its further development. In this paper, we introduce a context-aware and locality-constrained Coding (CALC) approach with context information for describing objects in a discriminative way. It is generally achieved by learning a word-to-word cooccurrence prior to imposing context information over locality-constrained coding. Firstly, the local context of each category is evaluated by learning a word-to-word cooccurrence matrix representing the spatial distribution of local features in neighbor region. Then, the learned cooccurrence matrix is used for measuring the context distance between local features and code words. Finally, a coding strategy simultaneously considers locality in feature space and context space, while introducing the weight of feature is proposed. This novel coding strategy not only semantically preserves the information in coding, but also has the ability to alleviate the noise distortion of each class. Extensive experiments on several available datasets (Scene-15, Caltech101, and Caltech256) are conducted to validate the superiority of our algorithm by comparing it with baselines and recent published methods. Experimental results show that our method significantly improves the performance of baselines and achieves comparable and even better performance with the state of the arts.

摘要

在最近的图像分类工作中,改进基于词袋(BOF)的特征设计的编码策略受到了越来越多的关注。然而,编码过程中的模糊性仍然阻碍了它的进一步发展。在本文中,我们引入了一种具有上下文感知和局部性约束的编码(CALC)方法,利用上下文信息以一种有区分性的方式描述对象。这通常是通过在对局部性约束编码施加上下文信息之前学习词与词的共现来实现的。首先,通过学习一个表示相邻区域中局部特征空间分布的词与词共现矩阵来评估每个类别的局部上下文。然后,将学习到的共现矩阵用于测量局部特征与码字之间的上下文距离。最后,提出了一种同时考虑特征空间和上下文空间中的局部性并引入特征权重的编码策略。这种新颖的编码策略不仅在语义上保留了编码中的信息,而且有能力减轻每个类别的噪声失真。在几个可用数据集(Scene-15、Caltech101和Caltech256)上进行了广泛的实验,通过与基线方法和最近发表的方法进行比较来验证我们算法的优越性。实验结果表明,我们的方法显著提高了基线方法的性能,并且与当前的先进技术取得了相当甚至更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca7e/3977552/7a8c3ef6c7d0/TSWJ2014-632871.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验