Suppr超能文献

基于高斯过程的焦平面传感器分割中的图像插值与去噪

Image interpolation and denoising for division of focal plane sensors using Gaussian processes.

作者信息

Gilboa Elad, Cunningham John P, Nehorai Arye, Gruev Viktor

出版信息

Opt Express. 2014 Jun 16;22(12):15277-91. doi: 10.1364/OE.22.015277.

Abstract

Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.

摘要

图像插值和去噪是图像处理中的重要技术。这些方法对于数字图像采集来说是固有的,因为大多数数码相机由二维的异构成像传感器网格组成。当前的偏振成像使用四种不同的像素化偏振滤光片,通常称为焦平面偏振传感器分光。这些传感器仅捕获真实场景的部分信息,导致空间分辨率的损失以及捕获的偏振信息的不准确。插值是一种恢复缺失信息并提高捕获的偏振信息准确性的标准技术。在这里,我们特别关注高斯过程回归,将其作为执行统计图像插值的一种方法,其中利用传感器噪声估计来提高估计像素信息的准确性。我们进一步利用此数据的固有网格结构来创建一种快速精确算法,该算法的运算时间为 (O(N^{3/2}))(相对于朴素算法的 (O(N³))),从而使高斯过程方法对于图像数据在计算上易于处理。这种建模改进和计算改进相结合,相对于先前发表的用于偏振计的插值方法产生了显著的改进,这在低信噪比(SNR)情况下最为明显。我们提供了焦平面偏振计的高斯过程插值性能的综合数学模型以及实验结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验