Santbergen Rudi, Tan Hairen, Zeman Miro, Smets Arno H M
Opt Express. 2014 Jun 30;22 Suppl 4:A1023-8. doi: 10.1364/OE.22.0A1023.
The scattering cross-section of a plasmonic nanoparticle is proportional to the intensity of the electric field that drives the plasmon resonance. In this work we determine the driving field pattern throughout a complete thin-film silicon solar cell. Our simulations reveal that by tuning of the thicknesses of silicon and transparent conductive oxide layers the driving field intensity experienced by an embedded plasmonic nanoparticle can be enhanced up to a factor of 14. This new insight opens the route towards more efficient plasmonic light trapping in thin-film solar cells.
等离子体纳米颗粒的散射截面与驱动等离子体共振的电场强度成正比。在这项工作中,我们确定了整个完整的薄膜硅太阳能电池中的驱动场模式。我们的模拟结果表明,通过调整硅层和透明导电氧化物层的厚度,嵌入的等离子体纳米颗粒所经历的驱动场强度可以提高到14倍。这一新见解为在薄膜太阳能电池中实现更高效的等离子体光捕获开辟了道路。