Suppr超能文献

利用磁共振成像(MRI)引导的聚焦超声实现隐形、可穿透血脑屏障的纳米颗粒的无创递送。

Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound.

作者信息

Nance Elizabeth, Timbie Kelsie, Miller G Wilson, Song Ji, Louttit Cameron, Klibanov Alexander L, Shih Ting-Yu, Swaminathan Ganesh, Tamargo Rafael J, Woodworth Graeme F, Hanes Justin, Price Richard J

机构信息

Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231 (USA).

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 (USA).

出版信息

J Control Release. 2014 Sep 10;189:123-132. doi: 10.1016/j.jconrel.2014.06.031. Epub 2014 Jun 28.

Abstract

The blood-brain barrier (BBB) presents a significant obstacle for the treatment of many central nervous system (CNS) disorders, including invasive brain tumors, Alzheimer's, Parkinson's and stroke. Therapeutics must be capable of bypassing the BBB and also penetrate the brain parenchyma to achieve a desired effect within the brain. In this study, we test the unique combination of a non-invasive approach to BBB permeabilization with a therapeutically relevant polymeric nanoparticle platform capable of rapidly penetrating within the brain microenvironment. MR-guided focused ultrasound (FUS) with intravascular microbubbles (MBs) is able to locally and reversibly disrupt the BBB with submillimeter spatial accuracy. Densely poly(ethylene-co-glycol) (PEG) coated, brain-penetrating nanoparticles (BPNs) are long-circulating and diffuse 10-fold slower in normal rat brain tissue compared to diffusion in water. Following intravenous administration of model and biodegradable BPNs in normal healthy rats, we demonstrate safe, pressure-dependent delivery of 60nm BPNs to the brain parenchyma in regions where the BBB is disrupted by FUS and MBs. Delivery of BPNs with MR-guided FUS has the potential to improve efficacy of treatments for many CNS diseases, while reducing systemic side effects by providing sustained, well-dispersed drug delivery into select regions of the brain.

摘要

血脑屏障(BBB)对许多中枢神经系统(CNS)疾病的治疗构成了重大障碍,这些疾病包括侵袭性脑肿瘤、阿尔茨海默病、帕金森病和中风。治疗药物必须能够绕过血脑屏障,并穿透脑实质,才能在脑内达到预期效果。在本研究中,我们测试了一种非侵入性血脑屏障通透方法与一种具有治疗相关性的聚合物纳米颗粒平台的独特组合,该平台能够快速穿透脑微环境。带有血管内微泡(MBs)的磁共振引导聚焦超声(FUS)能够以亚毫米级的空间精度局部且可逆地破坏血脑屏障。与在水中的扩散相比,密集聚(乙二醇)(PEG)包被的脑穿透纳米颗粒(BPNs)具有较长的循环时间,并且在正常大鼠脑组织中的扩散速度慢10倍。在正常健康大鼠静脉注射模型纳米颗粒和可生物降解的BPNs后,我们证明了在血脑屏障被FUS和MBs破坏的区域,60nm的BPNs能够安全、压力依赖地递送至脑实质。通过磁共振引导FUS递送BPNs有潜力提高许多中枢神经系统疾病的治疗效果,同时通过向脑内特定区域提供持续、分散良好的药物递送,减少全身副作用。

相似文献

4
Drug and gene delivery across the blood-brain barrier with focused ultrasound.聚焦超声介导的药物和基因透过血脑屏障递送
J Control Release. 2015 Dec 10;219:61-75. doi: 10.1016/j.jconrel.2015.08.059. Epub 2015 Sep 8.

引用本文的文献

3
Regulation of the brain tumor microenvironment by focused ultrasound.聚焦超声对脑肿瘤微环境的调控
Mol Ther Oncol. 2025 May 14;33(2):200994. doi: 10.1016/j.omton.2025.200994. eCollection 2025 Jun 18.
5
Targeted nanodelivery systems for personalized cancer therapy.用于个性化癌症治疗的靶向纳米递送系统。
Rep Pract Oncol Radiother. 2025 Feb 19;29(6):776-788. doi: 10.5603/rpor.103524. eCollection 2024.
7
Ultrasound-Activated Nanomaterials for Therapeutics.用于治疗的超声激活纳米材料
Bull Chem Soc Jpn. 2020 Feb 15;93(2):220-229. doi: 10.1246/bcsj.20190346. Epub 2019 Dec 12.
9
Progress of nanoparticle drug delivery system for the treatment of glioma.用于治疗神经胶质瘤的纳米颗粒药物递送系统的进展
Front Bioeng Biotechnol. 2024 Jun 11;12:1403511. doi: 10.3389/fbioe.2024.1403511. eCollection 2024.

本文引用的文献

2
Mechanisms of antidepressant resistance.抗抑郁药耐药性的机制。
Front Pharmacol. 2013 Nov 22;4:146. doi: 10.3389/fphar.2013.00146.
5
Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma.高穿透性载药纳米载体改善胶质母细胞瘤治疗效果。
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11751-6. doi: 10.1073/pnas.1304504110. Epub 2013 Jul 1.
9
Optimization of the ultrasound-induced blood-brain barrier opening.超声诱导血脑屏障开放的优化。
Theranostics. 2012;2(12):1223-37. doi: 10.7150/thno.5576. Epub 2012 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验