Suppr超能文献

静息态网络可将人类腹侧被盖区与黑质区分开来。

Resting state networks distinguish human ventral tegmental area from substantia nigra.

作者信息

Murty Vishnu P, Shermohammed Maheen, Smith David V, Carter R McKell, Huettel Scott A, Adcock R Alison

机构信息

Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA; Department of Neurobiology, Duke University, Durham, NC, 27708, USA.

Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA.

出版信息

Neuroimage. 2014 Oct 15;100:580-9. doi: 10.1016/j.neuroimage.2014.06.047. Epub 2014 Jun 27.

Abstract

Dopaminergic networks modulate neural processing across a spectrum of function from perception to learning to action. Multiple organizational schemes based on anatomy and function have been proposed for dopaminergic nuclei in the midbrain. One schema originating in rodent models delineated ventral tegmental area (VTA), implicated in complex behaviors like addiction, from more lateral substantia nigra (SN), preferentially implicated in movement. However, because anatomy and function in rodent midbrain differs from the primate midbrain in important ways, the utility of this distinction for human neuroscience has been questioned. We asked whether functional definition of networks within the human dopaminergic midbrain would recapitulate this traditional anatomical topology. We first developed a method for reliably defining SN and VTA in humans at conventional MRI resolution. Hand-drawn VTA and SN regions-of-interest (ROIs) were constructed for 50 participants, using individually-localized anatomical landmarks and signal intensity. Individual segmentation was used in seed-based functional connectivity analysis of resting-state functional MRI data; results of this analysis recapitulated traditional anatomical targets of the VTA versus SN. Next, we constructed a probabilistic atlas of the VTA, SN, and the dopaminergic midbrain region (comprised of SN plus VTA) from individual hand-drawn ROIs. The combined probabilistic (SN plus VTA) ROI was then used for connectivity-based dual-regression analysis in two independent resting-state datasets (n = 69 and n = 79). Results of the connectivity-based, dual-regression functional segmentation recapitulated results of the anatomical segmentation, validating the utility of this probabilistic atlas for future research.

摘要

多巴胺能神经网络调节从感知到学习再到行动等一系列功能的神经处理过程。基于解剖结构和功能,已经提出了多种针对中脑多巴胺能核团的组织方案。一种源自啮齿动物模型的模式将腹侧被盖区(VTA)——与成瘾等复杂行为有关——与更外侧的黑质(SN)区分开来,黑质优先与运动有关。然而,由于啮齿动物中脑的解剖结构和功能在重要方面与灵长类动物的中脑不同,这种区分对人类神经科学的实用性受到了质疑。我们询问人类多巴胺能中脑内网络的功能定义是否会重现这种传统的解剖拓扑结构。我们首先开发了一种在传统MRI分辨率下可靠定义人类黑质和腹侧被盖区的方法。利用个体定位的解剖标志和信号强度,为50名参与者构建了手绘的腹侧被盖区和黑质感兴趣区(ROI)。个体分割用于静息态功能MRI数据的基于种子点的功能连接分析;该分析结果重现了腹侧被盖区与黑质的传统解剖靶点。接下来,我们从个体手绘的感兴趣区构建了腹侧被盖区、黑质和多巴胺能中脑区域(由黑质加腹侧被盖区组成)的概率图谱。然后,在两个独立的静息态数据集(n = 69和n = 79)中,将合并的概率性(黑质加腹侧被盖区)感兴趣区用于基于连接性的双回归分析。基于连接性的双回归功能分割结果重现了解剖分割结果,验证了这种概率图谱对未来研究的实用性。

相似文献

4
Functional imaging of the human dopaminergic midbrain.人类多巴胺能中脑的功能成像。
Trends Neurosci. 2009 Jun;32(6):321-8. doi: 10.1016/j.tins.2009.02.005. Epub 2009 May 14.
8
Functional neuroanatomical review of the ventral tegmental area.腹侧被盖区的功能神经解剖学综述。
Neuroimage. 2019 May 1;191:258-268. doi: 10.1016/j.neuroimage.2019.01.062. Epub 2019 Jan 30.

引用本文的文献

10
Decoding and modifying dynamic attentional bias in gaming disorder.解码和修正游戏障碍中的动态注意偏向。
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230090. doi: 10.1098/rstb.2023.0090. Epub 2024 Oct 21.

本文引用的文献

2
Precuneus is a functional core of the default-mode network.楔前叶是默认模式网络的功能核心。
J Neurosci. 2014 Jan 15;34(3):932-40. doi: 10.1523/JNEUROSCI.4227-13.2014.
3
Advances in functional magnetic resonance imaging of the human brainstem.人脑干功能磁共振成像的进展。
Neuroimage. 2014 Feb 1;86:91-8. doi: 10.1016/j.neuroimage.2013.07.081. Epub 2013 Aug 9.
6
Decision making: from neuroscience to psychiatry.决策:从神经科学到精神病学。
Neuron. 2013 Apr 24;78(2):233-48. doi: 10.1016/j.neuron.2013.04.008.
8
Connectivity-based parcellation of the human posteromedial cortex.基于连接性的人类后内侧皮质分区。
Cereb Cortex. 2014 Mar;24(3):719-27. doi: 10.1093/cercor/bhs353. Epub 2012 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验