Suppr超能文献

跨细胞降解轴突线粒体。

Transcellular degradation of axonal mitochondria.

机构信息

The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205; and.

National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9633-8. doi: 10.1073/pnas.1404651111. Epub 2014 Jun 16.

Abstract

It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.

摘要

人们普遍认为健康的细胞会降解自身的线粒体。在这里,我们报告说,WT 小鼠的视网膜神经节细胞轴突在视神经头部(ONH)脱落线粒体,这些线粒体被相邻的星形胶质细胞内化和降解。电镜显示,线粒体通过形成起源于健康轴突的大突起而脱落。一种病毒引入的酸化线粒体串联荧光蛋白报告显示,起源于视网膜神经节细胞的酸化轴突线粒体与 ONH 中星形胶质细胞柱内的溶酶体相关。根据这个报告,与神经节细胞体相比,在 ONH 处有更多的视网膜神经节细胞的线粒体被降解。一致地,降解 DNA 的分析揭示了视神经星形胶质细胞内广泛的 mtDNA 降解,其中一些来自视网膜神经节细胞轴突。总之,这些结果表明,正常情况下,视神经星形胶质细胞会降解大量的视网膜神经节细胞轴突线粒体。这种跨细胞的线粒体降解,或传递自噬,可能在中枢神经系统的其他地方发生,因为在大脑皮层浅层的神经突中也发现了结构相似的降解线粒体的堆积。因此,人们普遍认为神经元或其他细胞必然会降解自身的线粒体,这一观点应该重新考虑。

相似文献

1
Transcellular degradation of axonal mitochondria.跨细胞降解轴突线粒体。
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9633-8. doi: 10.1073/pnas.1404651111. Epub 2014 Jun 16.
2

引用本文的文献

1
Molecular mechanisms of mitochondrial quality control.线粒体质量控制的分子机制
Transl Neurodegener. 2025 Sep 1;14(1):45. doi: 10.1186/s40035-025-00505-5.
3
Autophagic stress activates distinct compensatory secretory pathways in neurons.自噬应激激活神经元中不同的代偿性分泌途径。
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2421886122. doi: 10.1073/pnas.2421886122. Epub 2025 Jul 7.

本文引用的文献

2
Noncanonical autophagy promotes the visual cycle.非典型自噬促进视觉循环。
Cell. 2013 Jul 18;154(2):365-76. doi: 10.1016/j.cell.2013.06.012.
4
Mitochondrial fission, fusion, and stress.线粒体的分裂、融合和应激。
Science. 2012 Aug 31;337(6098):1062-5. doi: 10.1126/science.1219855.
5
Transcriptional integration of mitochondrial biogenesis.线粒体生物发生的转录整合。
Trends Endocrinol Metab. 2012 Sep;23(9):459-66. doi: 10.1016/j.tem.2012.06.006. Epub 2012 Jul 18.
7
Mitochondria as a central sensor for axonal degenerative stimuli.线粒体作为轴突退行性刺激的中央感受器。
Trends Neurosci. 2012 Jun;35(6):364-72. doi: 10.1016/j.tins.2012.04.001. Epub 2012 May 11.
10
Mitochondria: the next (neurode)generation.线粒体:下一代(神经)。
Neuron. 2011 Jun 23;70(6):1033-53. doi: 10.1016/j.neuron.2011.06.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验