Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67084 Strasbourg, France; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK.
Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67084 Strasbourg, France.
Curr Biol. 2014 Jul 7;24(13):1500-6. doi: 10.1016/j.cub.2014.05.024.
Animals living in temperate zones anticipate seasonal environmental changes to adapt their biological functions, especially reproduction and metabolism. Two main physiological mechanisms have evolved for this adaptation: intrinsic long-term timing mechanisms with an oscillating period of approximately 1 year, driven by a circannual clock [1], and synchronization of biological rhythms to the sidereal year using day length (photoperiod) [2]. In mammals, the pineal hormone melatonin relays photoperiodic information to the hypothalamus to control seasonal physiology through well-defined mechanisms [3-6]. In contrast, little is known about how the circannual clock drives endogenous changes in seasonal functions. The aim of this study was to determine whether genes involved in photoperiodic time measurement (TSHβ and Dio2) and central control of reproduction (Rfrp and Kiss1) display circannual rhythms in expression under constant conditions. Male European hamsters, deprived of seasonal time cues by pinealectomy and maintenance in constant photoperiod, were selected when expressing a subjective summer or subjective winter state in their circannual cycle of body weight, temperature, and testicular size. TSHβ expression in the pars tuberalis (PT) displayed a robust circannual variation with highest level in the subjective summer state, which was positively correlated with hypothalamic Dio2 and Rfrp expression. The negative sex steroid feedback was found to act specifically on arcuate Kiss1 expression. Our findings reveal TSH as a circannual output of the PT, which in turn regulates hypothalamic neurons controlling reproductive activity. Therefore, both the circannual and the melatonin signals converge on PT TSHβ expression to synchronize seasonal biological activity.
生活在温带地区的动物为了适应其生物功能,尤其是繁殖和代谢,会预测季节性的环境变化。为此,进化出两种主要的生理机制:一种是由年周期钟驱动的内在长期定时机制,其振荡周期约为 1 年[1];另一种是通过日长(光周期)将生物节律与恒星年同步[2]。在哺乳动物中,松果体激素褪黑素通过明确的机制将光周期信息传递到下丘脑,以控制季节性生理[3-6]。相比之下,关于年周期钟如何驱动季节性功能的内源性变化,人们知之甚少。本研究旨在确定参与光周期时间测量(TSHβ 和 Dio2)和生殖中枢控制(Rfrp 和 Kiss1)的基因在恒定条件下的表达是否具有年周期节律。雄性欧洲仓鼠通过松果腺切除术和恒定光周期维持剥夺季节性时间线索,并在其体重、体温和睾丸大小的年周期循环中表现出主观夏季或主观冬季状态时被选择。垂体柄(PT)中的 TSHβ表达呈现出强烈的年周期变化,在主观夏季状态下达到最高水平,与下丘脑 Dio2 和 Rfrp 的表达呈正相关。发现负性激素反馈专门作用于弓状 Kiss1 的表达。我们的研究结果揭示了 TSH 作为 PT 的年周期输出,反过来又调节了控制生殖活动的下丘脑神经元。因此,年周期和褪黑素信号都集中在 PT TSHβ表达上,以同步季节性生物活性。