Suppr超能文献

基于序列相似性和基因组邻域网络指导的酶活性预测与表征

Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks.

作者信息

Zhao Suwen, Sakai Ayano, Zhang Xinshuai, Vetting Matthew W, Kumar Ritesh, Hillerich Brandan, San Francisco Brian, Solbiati Jose, Steves Adam, Brown Shoshana, Akiva Eyal, Barber Alan, Seidel Ronald D, Babbitt Patricia C, Almo Steven C, Gerlt John A, Jacobson Matthew P

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.

Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States.

出版信息

Elife. 2014 Jun 30;3:e03275. doi: 10.7554/eLife.03275.

Abstract

Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.

摘要

真细菌和古细菌中的代谢途径通常由操纵子和/或基因簇(基因组邻域)编码,这些操纵子和/或基因簇为酶功能和代谢途径的分配提供了重要线索。我们描述了一种生物信息学方法(基因组邻域网络;GNN),该方法能够大规模预测蛋白质家族中未表征酶的体外酶活性和体内生理功能(代谢途径)。我们通过预测脯氨酸消旋酶超家族(PRS;InterPro IPR008794)中的体外活性和体内功能来证明GNN方法的实用性。通过测量PRS中12个家族的51种蛋白质的体外活性来验证预测,这些蛋白质代表了约85%的序列;途径酶的体外活性、碳/氮源表型和/或转录组学研究证实了预测的途径。序列相似性网络3和GNN的协同使用将有助于发现已测序基因组中新型未表征代谢途径的组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ee2/4113996/8252e504485c/elife03275f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验