Suppr超能文献

转化性暴露-疗效建模,以优化紫杉烷类药物与研究性极光激酶A抑制剂MLN8237(阿利西替尼)联合使用的剂量和给药方案。

Translational exposure-efficacy modeling to optimize the dose and schedule of taxanes combined with the investigational Aurora A kinase inhibitor MLN8237 (alisertib).

作者信息

Huck Jessica J, Zhang Mengkun, Mettetal Jerome, Chakravarty Arijit, Venkatakrishnan Karthik, Zhou Xiaofei, Kleinfield Rob, Hyer Marc L, Kannan Karuppiah, Shinde Vaishali, Dorner Andy, Manfredi Mark G, Shyu Wen Chyi, Ecsedy Jeffrey A

机构信息

Department of Cancer Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts.

Department of DMPK, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts.

出版信息

Mol Cancer Ther. 2014 Sep;13(9):2170-83. doi: 10.1158/1535-7163.MCT-14-0027. Epub 2014 Jun 30.

Abstract

Aurora A kinase orchestrates multiple key activities, allowing cells to transit successfully into and through mitosis. MLN8237 (alisertib) is a selective Aurora A inhibitor that is being evaluated as an anticancer agent in multiple solid tumors and heme-lymphatic malignancies. The antitumor activity of MLN8237 when combined with docetaxel or paclitaxel was evaluated in in vivo models of triple-negative breast cancer grown in immunocompromised mice. Additive and synergistic antitumor activity occurred at multiple doses of MLN8237 and taxanes. Moreover, significant tumor growth delay relative to the single agents was achieved after discontinuing treatment; notably, durable complete responses were observed in some mice. The tumor growth inhibition data generated with multiple dose levels of MLN8237 and paclitaxel were used to generate an exposure-efficacy model. Exposures of MLN8237 and paclitaxel achieved in patients were mapped onto the model after correcting for mouse-to-human variation in plasma protein binding and maximum tolerated exposures. This allowed rank ordering of various combination doses of MLN8237 and paclitaxel to predict which pair would lead to the greatest antitumor activity in clinical studies. The model predicted that 60 and 80 mg/m(2) of paclitaxel (every week) in patients lead to similar levels of efficacy, consistent with clinical observations in some cancer indications. The model also supported using the highest dose of MLN8237 that can be achieved, regardless of whether it is combined with 60 or 80 mg/m(2) of paciltaxel. The modeling approaches applied in these studies can be used to guide dose-schedule optimization for combination therapies using other therapeutic agents.

摘要

极光激酶A协调多种关键活动,使细胞能够成功进入并完成有丝分裂。MLN8237(alisertib)是一种选择性极光激酶A抑制剂,正在多种实体瘤和血液淋巴系统恶性肿瘤中作为抗癌药物进行评估。在免疫缺陷小鼠体内生长的三阴性乳腺癌模型中,评估了MLN8237与多西他赛或紫杉醇联合使用时的抗肿瘤活性。MLN8237和紫杉烷在多个剂量水平下均出现了相加和协同的抗肿瘤活性。此外,停止治疗后相对于单一药物显著延长了肿瘤生长延迟时间;值得注意的是,在一些小鼠中观察到了持久的完全缓解。使用多个剂量水平的MLN8237和紫杉醇产生的肿瘤生长抑制数据建立了暴露-疗效模型。在校正了小鼠与人血浆蛋白结合和最大耐受暴露的差异后,将患者体内达到的MLN8237和紫杉醇暴露量映射到该模型上。这使得能够对MLN8237和紫杉醇的各种联合剂量进行排序,以预测哪一对在临床研究中会产生最大的抗肿瘤活性。该模型预测,患者使用60和80mg/m²的紫杉醇(每周一次)会产生相似水平的疗效,这与某些癌症适应症的临床观察结果一致。该模型还支持使用能够达到的最高剂量的MLN8237,无论它与60还是80mg/m²的紫杉醇联合使用。这些研究中应用的建模方法可用于指导使用其他治疗药物的联合疗法的剂量方案优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验