Department of Biology, San Diego State University, San Diego, CA 92182;
Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093;
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10227-32. doi: 10.1073/pnas.1403319111. Epub 2014 Jun 30.
Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized that adaptation of microbiomes to local conditions is facilitated by the horizontal transfer of genes responsible for specific metabolic capabilities. To test this hypothesis, microbial metagenomes were sequenced from 22 coral reefs at 11 Line Islands in the central Pacific that together span a wide range of biogeochemical and anthropogenic influences. Consistent with our hypothesis, the percent cover of major benthic functional groups significantly correlated with particular microbial taxa. Reefs with higher coral cover had a coral microbiome with higher abundances of Alphaproteobacteria (such as Rhodobacterales and Sphingomonadales), whereas microbiomes of algae-dominated reefs had higher abundances of Gammaproteobacteria (such as Alteromonadales, Pseudomonadales, and Vibrionales), Betaproteobacteria, and Bacteriodetes. In contrast to taxa, geography was the strongest predictor of microbial community metabolism. Microbial communities on reefs with higher nutrient availability (e.g., equatorial upwelling zones) were enriched in genes involved in nutrient-related metabolisms (e.g., nitrate and nitrite ammonification, Ton/Tol transport, etc.). On reefs further from the equator, microbes had more genes encoding chlorophyll biosynthesis and photosystems I/II. These results support the hypothesis that core microbiomes are determined by holobiont macroorganisms, and that those core taxa adapt to local conditions by selecting for advantageous metabolic genes.
后生生物是宏观和微生物之间具有物种特异性的关联。在珊瑚礁中,由于自然和人为因素的影响,珊瑚和藻类后生生物的底栖覆盖率会发生变化。不同的底栖大型生物预计会有特定的微生物组。相比之下,局部环境因素预计会选择微生物中特定的代谢途径。为了调和这两个预测,我们假设微生物组对局部条件的适应是通过负责特定代谢能力的基因的水平转移来促进的。为了验证这一假设,我们从太平洋中部 11 个线群岛的 22 个珊瑚礁中测序了微生物宏基因组,这些珊瑚礁共同涵盖了广泛的生物地球化学和人为影响范围。与我们的假设一致,主要底栖功能群的覆盖率与特定的微生物类群显著相关。珊瑚覆盖率较高的珊瑚礁具有珊瑚微生物组,其中 Alpha 变形菌(如红杆菌目和单胞菌目)的丰度较高,而藻类占主导地位的珊瑚礁的微生物组中 Gamma 变形菌(如交替单胞菌目、假单胞菌目和颤蚓目)、Beta 变形菌和拟杆菌的丰度较高。与分类群相比,地理位置是微生物群落代谢的最强预测因子。营养物质供应较高的(例如赤道上升流区)珊瑚礁上的微生物群落富含与营养物质相关的代谢(例如硝酸盐和亚硝酸盐氨化、Ton/Tol 转运等)相关的基因。在离赤道更远的珊瑚礁上,微生物具有更多编码叶绿素生物合成和光系统 I/II 的基因。这些结果支持后生生物核心微生物组由后生生物的大型生物决定的假设,并且那些核心类群通过选择有利的代谢基因来适应局部条件。