Suppr超能文献

卡尔曼滤波数据同化:目标观测与参数估计

Kalman filter data assimilation: targeting observations and parameter estimation.

作者信息

Bellsky Thomas, Kostelich Eric J, Mahalov Alex

机构信息

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Chaos. 2014 Jun;24(2):024406. doi: 10.1063/1.4871916.

Abstract

This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

摘要

本文研究了目标观测对利用卡尔曼滤波数据同化(DA)技术确定的状态和参数估计的影响。我们首先给出一个分析结果,表明对于线性模型,在卡尔曼滤波中进行目标观测与固定或随机位置的观测相比,能显著降低状态估计误差。接下来,我们针对一个气象学感兴趣的混沌模型进行观测系统模拟实验,在实验中我们证明,基于最大集合方差进行目标观测的局部集合变换卡尔曼滤波(LETKF)比具有随机位置观测的LETKF更有能力提供更准确的状态估计。此外,我们发现一种混合集合卡尔曼滤波参数估计方法能在目标观测背景下准确更新模型参数,以进一步改善状态估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验