Suppr超能文献

单木质醇途径有助于花朵中挥发性苯丙烯的生物合成。

The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers.

作者信息

Muhlemann Joëlle K, Woodworth Benjamin D, Morgan John A, Dudareva Natalia

机构信息

Department of Biochemistry, Purdue University, West Lafayette, IN, 47907-2063, USA.

School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA.

出版信息

New Phytol. 2014 Nov;204(3):661-670. doi: 10.1111/nph.12913. Epub 2014 Jul 2.

Abstract

Volatile phenylpropenes play important roles in the mediation of interactions between plants and their biotic environments. Their biosynthesis involves the elimination of the oxygen functionality at the side-chain of monolignols and competes with lignin formation for monolignol utilization. We hypothesized that biochemical steps before the monolignol branch point are shared between phenylpropene and lignin biosynthesis; however, genetic evidence for this shared pathway has been missing until now. Our hypothesis was tested by RNAi suppression of the petunia (Petunia hybrida) cinnamoyl-CoA reductase 1 (PhCCR1), which catalyzes the first committed step in monolignol biosynthesis. Detailed metabolic profiling and isotopic labeling experiments were performed in petunia transgenic lines. Downregulation of PhCCR1 resulted in reduced amounts of total lignin and decreased flux towards phenylpropenes, whereas internal and emitted pools of phenylpropenes remained unaffected. Surprisingly, PhCCR1 silencing increased fluxes through the general phenylpropanoid pathway by upregulating the expression of cinnamate-4-hydroxylase (C4H), which catalyzes the second reaction in the phenylpropanoid pathway. In conclusion, our results show that PhCCR1 is involved in both the biosynthesis of phenylpropenes and lignin production. However, PhCCR1 does not perform a rate-limiting step in the biosynthesis of phenylpropenes, suggesting that scent biosynthesis is prioritized over lignin formation in petals.

摘要

挥发性苯丙烯在介导植物与其生物环境之间的相互作用中发挥着重要作用。它们的生物合成涉及在单木质醇侧链上消除氧官能团,并与木质素形成竞争单木质醇的利用。我们假设在单木质醇分支点之前的生化步骤在苯丙烯和木质素生物合成之间是共享的;然而,直到现在,这种共享途径的遗传证据一直缺失。我们通过RNA干扰抑制矮牵牛(Petunia hybrida)肉桂酰辅酶A还原酶1(PhCCR1)来验证我们的假设,该酶催化单木质醇生物合成中的第一个关键步骤。在矮牵牛转基因系中进行了详细的代谢谱分析和同位素标记实验。PhCCR1的下调导致总木质素含量降低,以及通向苯丙烯的通量减少,而苯丙烯的内部和释放库不受影响。令人惊讶的是,PhCCR1沉默通过上调肉桂酸-4-羟化酶(C4H)的表达增加了通过一般苯丙烷途径的通量,C4H催化苯丙烷途径中的第二步反应。总之,我们的结果表明PhCCR1参与了苯丙烯的生物合成和木质素的产生。然而,PhCCR1在苯丙烯生物合成中并不执行限速步骤,这表明花瓣中气味生物合成优先于木质素形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验