Suppr超能文献

在pH 4.0条件下将S-苯磺酰基半胱氨酸残基转化为混合二硫键:在蛋白质硫醇封闭和蛋白质S-亚硝基硫醇检测中的应用。

Conversion of S-phenylsulfonylcysteine residues to mixed disulfides at pH 4.0: utility in protein thiol blocking and in protein-S-nitrosothiol detection.

作者信息

Reeves B D, Joshi N, Campanello G C, Hilmer J K, Chetia L, Vance J A, Reinschmidt J N, Miller C G, Giedroc D P, Dratz E A, Singel D J, Grieco P A

机构信息

Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, MT 59717-3400, USA.

出版信息

Org Biomol Chem. 2014 Oct 28;12(40):7942-56. doi: 10.1039/c4ob00995a. Epub 2014 Jul 2.

Abstract

A three step protocol for protein S-nitrosothiol conversion to fluorescent mixed disulfides with purified proteins, referred to as the thiosulfonate switch, is explored which involves: (1) thiol blocking at pH 4.0 using S-phenylsulfonylcysteine (SPSC); (2) trapping of protein S-nitrosothiols as their S-phenylsulfonylcysteines employing sodium benzenesulfinate; and (3) tagging the protein thiosulfonate with a fluorescent rhodamine based probe bearing a reactive thiol (Rhod-SH), which forms a mixed disulfide between the probe and the formerly S-nitrosated cysteine residue. S-Nitrosated bovine serum albumin and the S-nitrosated C-terminally truncated form of AdhR-SH (alcohol dehydrogenase regulator) designated as AdhR*-SNO were selectively labelled by the thiosulfonate switch both individually and in protein mixtures containing free thiols. This protocol features the facile reaction of thiols with S-phenylsulfonylcysteines forming mixed disulfides at mild acidic pH (pH = 4.0) in both the initial blocking step as well as in the conversion of protein-S-sulfonylcysteines to form stable fluorescent disulfides. Labelling was monitored by TOF-MS and gel electrophoresis. Proteolysis and peptide analysis of the resulting digest identified the cysteine residues containing mixed disulfides bearing the fluorescent probe, Rhod-SH.

摘要

本文探索了一种三步法协议,用于将蛋白质S-亚硝基硫醇转化为与纯化蛋白质形成的荧光混合二硫键,即硫代磺酸盐转换法,该方法包括:(1)在pH 4.0条件下使用S-苯基磺酰基半胱氨酸(SPSC)封闭巯基;(2)用苯亚磺酸钠将蛋白质S-亚硝基硫醇捕获为其S-苯基磺酰基半胱氨酸;(3)用带有反应性巯基的基于罗丹明的荧光探针(Rhod-SH)标记蛋白质硫代磺酸盐,该探针与先前亚硝化的半胱氨酸残基之间形成混合二硫键。S-亚硝化牛血清白蛋白和指定为AdhR*-SNO的AdhR-SH(醇脱氢酶调节剂)的C端截短的S-亚硝化形式,在单独情况下以及在含有游离巯基的蛋白质混合物中,均通过硫代磺酸盐转换法进行了选择性标记。该方法的特点是,在温和酸性pH(pH = 4.0)条件下,巯基与S-苯基磺酰基半胱氨酸在初始封闭步骤以及蛋白质-S-磺酰基半胱氨酸转化为稳定荧光二硫键的过程中,都能轻松反应形成混合二硫键。通过飞行时间质谱(TOF-MS)和凝胶电泳监测标记过程。对所得消化产物进行蛋白酶解和肽分析,鉴定出含有与荧光探针Rhod-SH形成混合二硫键的半胱氨酸残基。

相似文献

4
Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins.
Free Radic Biol Med. 2008 Apr 1;44(7):1362-72. doi: 10.1016/j.freeradbiomed.2007.12.032. Epub 2008 Jan 4.
6
Steric effects in peptide and protein exchange with activated disulfides.
Biomacromolecules. 2013 Aug 12;14(8):2822-9. doi: 10.1021/bm400643p. Epub 2013 Jul 19.
8
Determination of low molecular thiols and protein sulfhydryl groups using heterocyclic disulfides.
Amino Acids. 2022 Mar;54(3):469-479. doi: 10.1007/s00726-022-03132-w. Epub 2022 Feb 3.

引用本文的文献

1
Covalent Chemical Tools for Profiling Post-Translational Modifications.
Front Chem. 2022 Jul 4;10:868773. doi: 10.3389/fchem.2022.868773. eCollection 2022.
2
Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors.
JACS Au. 2022 Mar 22;2(4):839-852. doi: 10.1021/jacsau.1c00573. eCollection 2022 Apr 25.
3
Structural basis for persulfide-sensing specificity in a transcriptional regulator.
Nat Chem Biol. 2021 Jan;17(1):65-70. doi: 10.1038/s41589-020-00671-9. Epub 2020 Oct 26.
4
Glucose-Induced Biofilm Accessory Protein A (GbaA) Is a Monothiol-Dependent Electrophile Sensor.
Biochemistry. 2020 Aug 11;59(31):2882-2895. doi: 10.1021/acs.biochem.0c00347. Epub 2020 Jul 29.
5
Structural basis of thiol-based regulation of formaldehyde detoxification in H. influenzae by a MerR regulator with no sensor region.
Nucleic Acids Res. 2016 Aug 19;44(14):6981-93. doi: 10.1093/nar/gkw543. Epub 2016 Jun 15.
6
Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications.
J Am Chem Soc. 2016 Feb 17;138(6):1852-9. doi: 10.1021/jacs.5b06806. Epub 2016 Feb 5.

本文引用的文献

2
Mechanism-based triarylphosphine-ester probes for capture of endogenous RSNOs.
J Am Chem Soc. 2013 May 22;135(20):7693-704. doi: 10.1021/ja401565w. Epub 2013 May 8.
3
Allosteric inhibition of a zinc-sensing transcriptional repressor: insights into the arsenic repressor (ArsR) family.
J Mol Biol. 2013 Apr 12;425(7):1143-57. doi: 10.1016/j.jmb.2013.01.018. Epub 2013 Jan 23.
5
S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system.
Antioxid Redox Signal. 2013 Jan 20;18(3):270-87. doi: 10.1089/ars.2012.4744. Epub 2012 Sep 5.
6
Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR.
Science. 2012 Apr 27;336(6080):470-3. doi: 10.1126/science.1215643.
7
The chemical biology of S-nitrosothiols.
Antioxid Redox Signal. 2012 Oct 1;17(7):969-80. doi: 10.1089/ars.2012.4590. Epub 2012 Jun 7.
8
Protein S-nitrosylation and cancer.
Cancer Lett. 2012 Jul 28;320(2):123-9. doi: 10.1016/j.canlet.2012.03.009. Epub 2012 Mar 13.
9
Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease.
J Mol Med (Berl). 2012 Mar;90(3):233-44. doi: 10.1007/s00109-012-0878-z. Epub 2012 Feb 24.
10
Regulation by S-nitrosylation of protein post-translational modification.
J Biol Chem. 2012 Feb 10;287(7):4411-8. doi: 10.1074/jbc.R111.285742. Epub 2011 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验