Suppr超能文献

用于鞘磷脂的CHARMM全原子加和力场:氢键及正曲率的阐释

CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature.

作者信息

Venable Richard M, Sodt Alexander J, Rogaski Brent, Rui Huan, Hatcher Elizabeth, MacKerell Alexander D, Pastor Richard W, Klauda Jeffery B

机构信息

Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland.

出版信息

Biophys J. 2014 Jul 1;107(1):134-45. doi: 10.1016/j.bpj.2014.05.034.

Abstract

The C36 CHARMM lipid force field has been extended to include sphingolipids, via a combination of high-level quantum mechanical calculations on small molecule fragments, and validation by extensive molecular dynamics simulations on N-palmitoyl and N-stearoyl sphingomyelin. NMR data on these two molecules from several studies in bilayers and micelles played a strong role in the development and testing of the force field parameters. Most previous force fields for sphingomyelins were developed before the availability of the detailed NMR data and relied on x-ray diffraction of bilayers alone for the validation; these are shown to be too dense in the bilayer plane based on published chain order parameter data from simulations and experiments. The present simulations reveal O-H:::O-P intralipid hydrogen bonding occurs 99% of the time, and interlipid N-H:::O=C (26-29%, depending on the lipid) and N-H:::O-H (17-19%). The interlipid hydrogen bonds are long lived, showing decay times of 50 ns, and forming strings of lipids, and leading to reorientational correlation time of nearly 100 ns. The spontaneous radius of curvature for pure N-palmitoyl sphingomyelin bilayers is estimated to be 43-100 Å, depending on the assumptions made in assigning a bending constant; this unusual positive curvature for a two-tailed neutral lipid is likely associated with hydrogen bond networks involving the NH of the sphingosine group.

摘要

C36 CHARMM脂质力场已通过对小分子片段进行高水平量子力学计算,并结合对N-棕榈酰鞘磷脂和N-硬脂酰鞘磷脂进行广泛的分子动力学模拟进行验证,从而扩展到包括鞘脂。来自双层和胶束中多项研究的这两种分子的核磁共振数据在力场参数的开发和测试中发挥了重要作用。以前大多数针对鞘磷脂的力场是在详细的核磁共振数据可用之前开发的,仅依靠双层的X射线衍射进行验证;根据已发表的模拟和实验中的链序参数数据,这些力场在双层平面中显示过于密集。目前的模拟显示,脂质内的O-H:::O-P氢键在99%的时间内发生,脂质间的N-H:::O=C(26-29%,取决于脂质)和N-H:::O-H(17-19%)。脂质间的氢键寿命很长,衰减时间为50纳秒,并形成脂质链,导致重排相关时间接近100纳秒。根据在指定弯曲常数时所做的假设,纯N-棕榈酰鞘磷脂双层的自发曲率半径估计为43-100埃;这种两亲性中性脂质不寻常的正曲率可能与涉及鞘氨醇基团NH的氢键网络有关。

相似文献

7
Improving the CHARMM force field for polyunsaturated fatty acid chains.改进多不饱和脂肪酸链的 CHARMM 力场。
J Phys Chem B. 2012 Aug 9;116(31):9424-31. doi: 10.1021/jp304056p. Epub 2012 Jul 3.
10

引用本文的文献

1
5
Sphingomyelin slows interfacial hydrogen-bonding dynamics in lipid membranes.鞘磷脂减缓脂质膜中的界面氢键动力学。
Biophys J. 2025 Apr 1;124(7):1158-1165. doi: 10.1016/j.bpj.2025.02.020. Epub 2025 Feb 26.
8
Activation of the Influenza B M2 Proton Channel (BM2).乙型流感病毒 M2 质子通道(BM2)的激活。
Biochemistry. 2024 Nov 19;63(22):3011-3019. doi: 10.1021/acs.biochem.4c00607. Epub 2024 Nov 3.
9
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.CHARMM 45:可访问性、功能和速度的增强。
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.

本文引用的文献

1
Another Piece of the Membrane Puzzle: Extending Slipids Further.膜谜题的另一块拼图:进一步拓展类滑动脂质
J Chem Theory Comput. 2013 Jan 8;9(1):774-84. doi: 10.1021/ct300777p. Epub 2012 Oct 30.
2
Martini Force Field Parameters for Glycolipids.糖脂的Martini力场参数
J Chem Theory Comput. 2013 Mar 12;9(3):1694-708. doi: 10.1021/ct3009655. Epub 2013 Feb 5.
5
New faster CHARMM molecular dynamics engine.新型更快的 CHARMM 分子动力学引擎。
J Comput Chem. 2014 Feb 15;35(5):406-13. doi: 10.1002/jcc.23501. Epub 2013 Dec 2.
7
Introductory lecture: basic quantities in model biomembranes.导论课:模型生物膜中的基本量。
Faraday Discuss. 2013;161:11-29; discussion 113-50. doi: 10.1039/c2fd20121f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验