Suppr超能文献

在果蝇3'非翻译区发现非编码RNA元件。

Discovering non-coding RNA elements in Drosophila 3' untranslated regions.

作者信息

Zhong Cuncong, Andrews Justen, Zhang Shaojie

机构信息

Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA.

Department of Biology, Indiana University, Bloomington, IN 47405, USA.

出版信息

Int J Bioinform Res Appl. 2014;10(4-5):479-97. doi: 10.1504/IJBRA.2014.062996.

Abstract

The Non-Coding RNA (ncRNA) elements in the 3' Untranslated Regions (3'-UTRs) are known to participate in the genes' post-transcriptional regulations. Inferring co-expression patterns of the genes through clustering these 3'-UTR ncRNA elements will provide invaluable insights for studying their biological functions. In this paper, we propose an improved RNA structural clustering pipeline. Benchmark of the new pipeline on Rfam data demonstrates over 10% performance improvements compared to the traditional hierarchical clustering pipeline. By applying the new clustering pipeline to 3'-UTRs of Drosophila melanogaster's genome, we have successfully identified 184 ncRNA clusters with 91.3% accuracy. One of these clusters corresponds to genes that are preferentially expressed in male Drosophila. Another cluster contains genes that are responsible for the functions of septate junction in epithelial cells. These discoveries encourage more studies on novel post-transcriptional regulation mechanisms.

摘要

已知3'非翻译区(3'-UTR)中的非编码RNA(ncRNA)元件参与基因的转录后调控。通过对这些3'-UTR ncRNA元件进行聚类来推断基因的共表达模式,将为研究其生物学功能提供宝贵的见解。在本文中,我们提出了一种改进的RNA结构聚类流程。新流程在Rfam数据上的基准测试表明,与传统的层次聚类流程相比,性能提高了10%以上。通过将新的聚类流程应用于黑腹果蝇基因组的3'-UTR,我们成功地识别出184个ncRNA簇,准确率为91.3%。其中一个簇对应于在雄性果蝇中优先表达的基因。另一个簇包含负责上皮细胞中分隔连接功能的基因。这些发现鼓励对新的转录后调控机制进行更多研究。

相似文献

1
Discovering non-coding RNA elements in Drosophila 3' untranslated regions.
Int J Bioinform Res Appl. 2014;10(4-5):479-97. doi: 10.1504/IJBRA.2014.062996.
2
Biocomputational prediction of non-coding RNAs in model cyanobacteria.
BMC Genomics. 2009 Mar 23;10:123. doi: 10.1186/1471-2164-10-123.
3
Structure-based whole-genome realignment reveals many novel noncoding RNAs.
Genome Res. 2013 Jun;23(6):1018-27. doi: 10.1101/gr.137091.111. Epub 2013 Jan 7.
5
RNAProfile: an algorithm for finding conserved secondary structure motifs in unaligned RNA sequences.
Nucleic Acids Res. 2004 Jun 15;32(10):3258-69. doi: 10.1093/nar/gkh650. Print 2004.
8
Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families.
Curr Protoc Bioinformatics. 2016 Jun 20;54:12.13.1-12.13.25. doi: 10.1002/cpbi.4.
9
Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain.
BMC Genomics. 2012 May 31;13:214. doi: 10.1186/1471-2164-13-214.
10
DotAligner: identification and clustering of RNA structure motifs.
Genome Biol. 2017 Dec 28;18(1):244. doi: 10.1186/s13059-017-1371-3.

引用本文的文献

1
Screening and Verification of Molecular Markers and Genes Related to Salt-Alkali Tolerance in .
Front Genet. 2022 Feb 8;13:755004. doi: 10.3389/fgene.2022.755004. eCollection 2022.
2
Identification and characterization of novel conserved RNA structures in Drosophila.
BMC Genomics. 2018 Dec 11;19(1):899. doi: 10.1186/s12864-018-5234-4.

本文引用的文献

1
The developmental transcriptome of Drosophila melanogaster.
Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.
2
OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011.
Nucleic Acids Res. 2011 Jan;39(Database issue):D283-8. doi: 10.1093/nar/gkq930. Epub 2010 Oct 23.
3
A faster algorithm for simultaneous alignment and folding of RNA.
J Comput Biol. 2010 Aug;17(8):1051-65. doi: 10.1089/cmb.2009.0197.
4
GOing Bayesian: model-based gene set analysis of genome-scale data.
Nucleic Acids Res. 2010 Jun;38(11):3523-32. doi: 10.1093/nar/gkq045. Epub 2010 Feb 19.
5
FlyTED: the Drosophila Testis Gene Expression Database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D710-5. doi: 10.1093/nar/gkp1006. Epub 2009 Nov 24.
6
RNAz 2.0: improved noncoding RNA detection.
Pac Symp Biocomput. 2010:69-79.
7
Finding non-coding RNAs through genome-scale clustering.
J Bioinform Comput Biol. 2009 Apr;7(2):373-88. doi: 10.1142/s0219720009004126.
8
Infernal 1.0: inference of RNA alignments.
Bioinformatics. 2009 May 15;25(10):1335-7. doi: 10.1093/bioinformatics/btp157. Epub 2009 Mar 23.
9
mRNA localization: gene expression in the spatial dimension.
Cell. 2009 Feb 20;136(4):719-30. doi: 10.1016/j.cell.2009.01.044.
10
Structural profiles of human miRNA families from pairwise clustering.
Bioinformatics. 2009 Feb 1;25(3):291-4. doi: 10.1093/bioinformatics/btn628. Epub 2008 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验