Suppr超能文献

使用Infernal研究RNA同源性和保守性:从单序列到RNA家族

Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families.

作者信息

Barquist Lars, Burge Sarah W, Gardner Paul P

机构信息

Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.

Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom.

出版信息

Curr Protoc Bioinformatics. 2016 Jun 20;54:12.13.1-12.13.25. doi: 10.1002/cpbi.4.

Abstract

Emerging high-throughput technologies have led to a deluge of putative non-coding RNA (ncRNA) sequences identified in a wide variety of organisms. Systematic characterization of these transcripts will be a tremendous challenge. Homology detection is critical to making maximal use of functional information gathered about ncRNAs: identifying homologous sequence allows us to transfer information gathered in one organism to another quickly and with a high degree of confidence. ncRNA presents a challenge for homology detection, as the primary sequence is often poorly conserved and de novo secondary structure prediction and search remain difficult. This unit introduces methods developed by the Rfam database for identifying "families" of homologous ncRNAs starting from single "seed" sequences, using manually curated sequence alignments to build powerful statistical models of sequence and structure conservation known as covariance models (CMs), implemented in the Infernal software package. We provide a step-by-step iterative protocol for identifying ncRNA homologs and then constructing an alignment and corresponding CM. We also work through an example for the bacterial small RNA MicA, discovering a previously unreported family of divergent MicA homologs in genus Xenorhabdus in the process. © 2016 by John Wiley & Sons, Inc.

摘要

新兴的高通量技术已导致在各种各样的生物体中鉴定出大量假定的非编码RNA(ncRNA)序列。对这些转录本进行系统表征将是一项巨大的挑战。同源性检测对于最大限度地利用收集到的有关ncRNA的功能信息至关重要:识别同源序列使我们能够快速且高度自信地将在一种生物体中收集到的信息转移到另一种生物体中。ncRNA对同源性检测提出了挑战,因为其一级序列通常保守性较差,而且从头进行二级结构预测和搜索仍然困难。本单元介绍了Rfam数据库开发的方法,该方法从单个“种子”序列开始识别同源ncRNA的“家族”,使用人工编辑的序列比对构建强大的序列和结构保守性统计模型,即协方差模型(CMs),该模型在Infernal软件包中实现。我们提供了一个逐步迭代的方案,用于识别ncRNA同源物,然后构建比对和相应的CM。我们还通过细菌小RNA MicA的实例进行研究,在此过程中发现了以前未报道的在致病杆菌属中与MicA不同源的一个家族。© 2016约翰威立父子公司版权所有

相似文献

1
Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families.
Curr Protoc Bioinformatics. 2016 Jun 20;54:12.13.1-12.13.25. doi: 10.1002/cpbi.4.
2
Computational identification of functional RNA homologs in metagenomic data.
RNA Biol. 2013 Jul;10(7):1170-9. doi: 10.4161/rna.25038. Epub 2013 May 20.
3
Non-Coding RNA Analysis Using the Rfam Database.
Curr Protoc Bioinformatics. 2018 Jun;62(1):e51. doi: 10.1002/cpbi.51. Epub 2018 Jun 5.
4
Rfam: annotating families of non-coding RNA sequences.
Methods Mol Biol. 2015;1269:349-63. doi: 10.1007/978-1-4939-2291-8_22.
5
Search for 5'-leader regulatory RNA structures based on gene annotation aided by the RiboGap database.
Methods. 2017 Mar 15;117:3-13. doi: 10.1016/j.ymeth.2017.02.009. Epub 2017 Mar 6.
6
A local multiple alignment method for detection of non-coding RNA sequences.
Bioinformatics. 2009 Jun 15;25(12):1498-505. doi: 10.1093/bioinformatics/btp261. Epub 2009 Apr 17.
7
Annotating non-coding RNAs with Rfam.
Curr Protoc Bioinformatics. 2005 Apr;Chapter 12:12.5.1-12.5.12. doi: 10.1002/0471250953.bi1205s9.
8
STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time.
Bioinformatics. 2006 Jul 1;22(13):1593-9. doi: 10.1093/bioinformatics/btl142. Epub 2006 Apr 13.
9
Customized strategies for discovering distant ncRNA homologs.
Brief Funct Genomic Proteomic. 2009 Nov;8(6):451-60. doi: 10.1093/bfgp/elp035. Epub 2009 Sep 24.
10
Discovery of Novel ncRNA Sequences in Multiple Genome Alignments on the Basis of Conserved and Stable Secondary Structures.
PLoS One. 2015 Jun 15;10(6):e0130200. doi: 10.1371/journal.pone.0130200. eCollection 2015.

引用本文的文献

2
TSS-Captur: a user-friendly pipeline for characterizing unclassified RNA transcripts.
NAR Genom Bioinform. 2024 Dec 18;6(4):lqae168. doi: 10.1093/nargab/lqae168. eCollection 2024 Dec.
3
Identification and Characterization of Non-protein Coding RNA Homologs in by Comparative Transcriptomics.
Indian J Microbiol. 2024 Mar;64(1):198-204. doi: 10.1007/s12088-023-01160-y. Epub 2023 Dec 14.
4
GERONIMO: A tool for systematic retrieval of structural RNAs in a broad evolutionary context.
Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad080. Epub 2023 Oct 17.
5
Small regulatory RNAs are mediators of the SloR regulon.
J Bacteriol. 2023 Sep 26;205(9):e0017223. doi: 10.1128/jb.00172-23. Epub 2023 Sep 11.
6
Ms1 RNA Interacts With the RNA Polymerase Core in and Was Identified in Majority of Using a Linguistic Gene Synteny Search.
Front Microbiol. 2022 May 11;13:848536. doi: 10.3389/fmicb.2022.848536. eCollection 2022.
7
Genome-Wide Identification of Novel sRNAs in Streptococcus mutans.
J Bacteriol. 2022 Apr 19;204(4):e0057721. doi: 10.1128/jb.00577-21. Epub 2022 Mar 14.
8
A Peroxide-Responding sRNA Evolved from a Peroxidase mRNA.
Mol Biol Evol. 2022 Feb 3;39(2). doi: 10.1093/molbev/msac020.
9
Conservation in the Iron Responsive Element Family.
Genes (Basel). 2021 Aug 30;12(9):1365. doi: 10.3390/genes12091365.
10
Complete Genome Sequence of Burkholderia cenocepacia K56-2, an Opportunistic Pathogen.
Microbiol Resour Announc. 2020 Oct 22;9(43):e01015-20. doi: 10.1128/MRA.01015-20.

本文引用的文献

1
A comprehensive comparison of general RNA-RNA interaction prediction methods.
Nucleic Acids Res. 2016 Apr 20;44(7):e61. doi: 10.1093/nar/gkv1477. Epub 2015 Dec 15.
2
Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies.
Annu Rev Genet. 2015;49:367-94. doi: 10.1146/annurev-genet-112414-054804. Epub 2015 Oct 14.
3
Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition.
EMBO J. 2015 Oct 14;34(20):2557-73. doi: 10.15252/embj.201591569. Epub 2015 Sep 15.
4
New classes of self-cleaving ribozymes revealed by comparative genomics analysis.
Nat Chem Biol. 2015 Aug;11(8):606-10. doi: 10.1038/nchembio.1846. Epub 2015 Jul 13.
5
HMMER web server: 2015 update.
Nucleic Acids Res. 2015 Jul 1;43(W1):W30-8. doi: 10.1093/nar/gkv397. Epub 2015 May 5.
6
The RNA structurome: transcriptome-wide structure probing with next-generation sequencing.
Trends Biochem Sci. 2015 Apr;40(4):221-32. doi: 10.1016/j.tibs.2015.02.005. Epub 2015 Mar 18.
8
Annotating RNA motifs in sequences and alignments.
Nucleic Acids Res. 2015 Jan;43(2):691-8. doi: 10.1093/nar/gku1327. Epub 2014 Dec 17.
9
Dissemination of 6S RNA among bacteria.
RNA Biol. 2014;11(11):1467-78. doi: 10.4161/rna.29894.
10
Content discovery and retrieval services at the European Nucleotide Archive.
Nucleic Acids Res. 2015 Jan;43(Database issue):D23-9. doi: 10.1093/nar/gku1129. Epub 2014 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验