U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics; and Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
Am J Physiol Regul Integr Comp Physiol. 2014 Sep 15;307(6):R585-96. doi: 10.1152/ajpregu.00096.2014. Epub 2014 Jul 2.
The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiota-derived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine L cells in the gut and coreleased from preproglucagonergic neurons in the brain stem. Glucagon-like peptides are proposed as key mediators for bariatric surgery-improved glycemic control and energy balance. Little is known about the GLP-2 receptor (Glp2r)-mediated physiological roles in the control of food intake and glucose homeostasis, yet Glp1r has been studied extensively. This review will highlight the physiological relevance of the central nervous system (CNS) Glp2r in the control of energy balance and glucose homeostasis and focuses on cellular mechanisms underlying the CNS Glp2r-mediated neural circuitry and intracellular PI3K signaling pathway. New evidence (obtained from Glp2r tissue-specific KO mice) indicates that the Glp2r in POMC neurons is essential for suppressing feeding behavior, gastrointestinal motility, and hepatic glucose production. Mice with Glp2r deletion selectively in POMC neurons exhibit hyperphagic behavior, accelerated gastric emptying, glucose intolerance, and hepatic insulin resistance. GLP-2 differentially modulates postsynaptic membrane excitability of hypothalamic POMC neurons in Glp2r- and PI3K-dependent manners. GLP-2 activates the PI3K-Akt-FoxO1 signaling pathway in POMC neurons by Glp2r-p85α interaction. Intracerebroventricular GLP-2 augments glucose tolerance, suppresses glucose production, and enhances insulin sensitivity, which require PI3K (p110α) activation in POMC neurons. Thus, the CNS Glp2r plays a physiological role in the control of food intake and glucose homeostasis. This review will also discuss key questions for future studies.
肠-脑轴在能量平衡和葡萄糖稳态的控制中起着关键作用。响应于肠道对宏量营养素和微生物衍生代谢物(次级胆汁酸和短链脂肪酸)的腔内刺激,胰高血糖素样肽(GLP-1 和 -2)从肠道内分泌 L 细胞共同分泌,并从脑干的前胰高血糖素能神经元中共同释放。胰高血糖素样肽被认为是减重手术改善血糖控制和能量平衡的关键介质。关于 GLP-2 受体(Glp2r)介导的控制食物摄入和葡萄糖稳态的生理作用知之甚少,但 Glp1r 已被广泛研究。这篇综述将重点介绍中枢神经系统(CNS)Glp2r 在控制能量平衡和葡萄糖稳态中的生理相关性,并重点介绍 CNS Glp2r 介导的神经回路和细胞内 PI3K 信号通路的细胞机制。新的证据(从 Glp2r 组织特异性 KO 小鼠中获得)表明,POMC 神经元中的 Glp2r 对于抑制摄食行为、胃肠道蠕动和肝葡萄糖产生是必不可少的。选择性缺失 Glp2r 的 POMC 神经元的小鼠表现出摄食行为增加、胃排空加速、葡萄糖不耐受和肝胰岛素抵抗。GLP-2 以 Glp2r 和 PI3K 依赖的方式差异调节下丘脑 POMC 神经元的突触后膜兴奋性。GLP-2 通过 Glp2r-p85α 相互作用激活 POMC 神经元中的 PI3K-Akt-FoxO1 信号通路。侧脑室注射 GLP-2 增强葡萄糖耐量、抑制葡萄糖产生并增强胰岛素敏感性,这需要 POMC 神经元中的 PI3K(p110α)激活。因此,中枢神经系统 Glp2r 在控制食物摄入和葡萄糖稳态方面发挥着生理作用。这篇综述还将讨论未来研究的关键问题。