Psychology Department, University of Amsterdam, 1018 XA Amsterdam, The Netherlands
J Neurosci. 2014 Jul 2;34(27):8988-98. doi: 10.1523/JNEUROSCI.0261-14.2014.
Neuroscience research spans multiple spatiotemporal scales, from subsecond dynamics of individual neurons to the slow coordination of billions of neurons during resting state and sleep. Here it is shown that a single functional principle-temporal fluctuations in oscillation peak frequency ("frequency sliding")-can be used as a common analysis approach to bridge multiple scales within neuroscience. Frequency sliding is demonstrated in simulated neural networks and in human EEG data during a visual task. Simulations of biophysically detailed neuron models show that frequency sliding modulates spike threshold and timing variability, as well as coincidence detection. Finally, human resting-state EEG data demonstrate that frequency sliding occurs endogenously and can be used to identify large-scale networks. Frequency sliding appears to be a general principle that regulates brain function on multiple spatial and temporal scales, from modulating spike timing in individual neurons to coordinating large-scale brain networks during cognition and resting state.
神经科学研究跨越多个时空尺度,从单个神经元的亚秒级动力学到静息状态和睡眠期间数十亿个神经元的缓慢协调。本文表明,单个功能原理——振荡峰频率的时变(“频率滑动”)——可用作神经科学中多个尺度的通用分析方法。在模拟神经网络和人类 EEG 数据中,在视觉任务期间,演示了频率滑动。生物物理详细神经元模型的模拟表明,频率滑动调节了尖峰阈值和时间变异性以及符合检测。最后,人类静息状态 EEG 数据表明,频率滑动是一种内在发生的普遍原理,可用于识别大规模网络。频率滑动似乎是一种普遍原理,可调节多个时空尺度的大脑功能,从调节单个神经元中的尖峰时间到在认知和静息状态期间协调大脑的大规模网络。