Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2012591118.
The mechanism by which molecular oxygen is activated by the organic cofactor pyridoxal phosphate (PLP) for oxidation reactions remains poorly understood. Recent work has identified arginine oxidases that catalyze desaturation or hydroxylation reactions. Here, we investigate a desaturase from the indolmycin pathway. Our work, combining X-ray crystallographic, biochemical, spectroscopic, and computational studies, supports a shared mechanism with arginine hydroxylases, involving two rounds of single-electron transfer to oxygen and superoxide rebound at the 4' carbon of the PLP cofactor. The precise positioning of a water molecule in the active site is proposed to control the final reaction outcome. This proposed mechanism provides a unified framework to understand how oxygen can be activated by PLP-dependent enzymes for oxidation of arginine and elucidates a shared mechanistic pathway and intertwined evolutionary history for arginine desaturases and hydroxylases.
氧分子被有机辅因子吡哆醛磷酸(PLP)激活用于氧化反应的机制仍未被很好地理解。最近的工作已经鉴定出了催化不饱和或羟化反应的精氨酸氧化酶。在这里,我们研究了吲哚霉素途径中的一种去饱和酶。我们的工作结合了 X 射线晶体学、生物化学、光谱学和计算研究,支持与精氨酸羟化酶共享的机制,涉及两轮向氧和超氧化物的单电子转移,以及 PLP 辅因子的 4'碳的反弹。提议在活性位点中精确定位一个水分子,以控制最终反应结果。该提议的机制提供了一个统一的框架,以了解如何通过 PLP 依赖性酶激活氧用于精氨酸的氧化,并阐明了精氨酸去饱和酶和羟化酶的共同机制途径和交织的进化历史。