Suppr超能文献

基于弥散张量成像衍生指标的判别分析鉴别多形性胶质母细胞瘤与正常脑:一种新的全脑分析方法的介绍。

Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach.

机构信息

Magnetic Resonance Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico.

Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Mexico City, Mexico.

出版信息

Radiol Oncol. 2014 Apr 25;48(2):127-36. doi: 10.2478/raon-2014-0004. eCollection 2014 Jun.

Abstract

BACKGROUND

Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics.

METHODS

Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed.

RESULTS

The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p < .001. The overall predictive accuracy was 92.7%.

CONCLUSIONS

We present a phase II study introducing a novel global approach using DTI-derived biomarkers of brain impairment. The final predictive model selected only three metrics: axial diffusivity, spherical tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.

摘要

背景

胶质母细胞瘤的组织学行为表明,它将从全局而不是局部评估中获益更多。弥散张量成像(DTI)衍生张量指标的全局(全脑)计算提供了一种有效的方法来检测白质结构的完整性,而不会错过常规序列中未见到的浸润性脑区。在这项研究中,我们使用全局张量指标计算了胶质母细胞瘤患者脑浸润的预测模型。

方法

回顾性病例对照研究;在 27 名胶质母细胞瘤患者和 34 名对照者中计算了 11 项全局 DTI 衍生张量指标:平均弥散度、各向异性分数、纯各向同性弥散、纯各向异性弥散、弥散张量的总幅度、线性张量、平面张量、球形张量、相对各向异性、轴向弥散度和径向弥散度。对这些变量(包括年龄)进行了多元判别分析,并进行了诊断测试评估。

结果

对 61 名受试者的 12 个连续变量的 732 个测量值进行同步分析,揭示了一个能显著区分正常脑和胶质母细胞瘤脑的判别模型:Wilks' λ = 0.324,χ(2) (3) = 38.907,p <.001。总体预测准确率为 92.7%。

结论

我们提出了一项 II 期研究,引入了一种使用 DTI 衍生的脑损伤生物标志物的新的全局方法。最终的预测模型仅选择了三个指标:轴向弥散度、球形张量和线性张量。这些指标可能在临床上用于诊断、随访和其他神经疾病的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/067f/4078031/1ea86381cef0/rado-48-02-127f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验