Suppr超能文献

通过基于近似贝叶斯计算(ABC)方法估算生物监测数据来改进膳食暴露模型。

Improving dietary exposure models by imputing biomonitoring data through ABC methods.

作者信息

Béchaux Camille, Crépet Amélie, Clémençon Stéphan

出版信息

Int J Biostat. 2014;10(2):277-87. doi: 10.1515/ijb-2013-0062.

Abstract

New data are available in the field of risk assessment: the biomonitoring data which is measurement of the chemical dose in a human tissue (e.g. blood or urine). These data are original because they represent direct measurements of the dose of chemical substances really taken up from the environment, whereas exposure is usually assessed from contamination levels of the different exposure media (e.g. food, air, water, etc.) and statistical models. However, considered alone, these data provide little help from the perspective of Public Health guidance. The objective of this paper is to propose a method to exploit the information provided by human biomonitoring in order to improve the modeling of exposure. This method is based on the Kinetic Dietary Exposure Model which takes into account the pharmacokinetic elimination and the accumulation phenomenon inside the human body. This model is corrected to account for any possible temporal evolution in exposure by adding a scaling function which describes this evolution. Approximate Bayesian Computation is used to fit this exposure model from the biomonitoring data available. Specific summary statistics and appropriate distances between simulated and observed statistical distributions are proposed and discussed in the light of risk assessment. The promoted method is then applied to measurements of blood concentration of dioxins in a group of French fishermen families. The outputs of the model are an estimation of the body burden distribution from observed dietary intakes and the evolution of dietary exposure to dioxins in France between 1930 and today. This model successfully fit to dioxins data can also be used with other biomonitoring data to improve the risk assessment to many other contaminants.

摘要

风险评估领域有了新的数据

生物监测数据,即对人体组织(如血液或尿液)中化学物质剂量的测量。这些数据具有原始性,因为它们代表了从环境中实际摄入的化学物质剂量的直接测量值,而暴露通常是根据不同暴露介质(如食物、空气、水等)的污染水平和统计模型来评估的。然而,仅从公共卫生指导的角度来看,这些数据提供的帮助不大。本文的目的是提出一种方法,利用人体生物监测提供的信息来改进暴露建模。该方法基于动力学膳食暴露模型,该模型考虑了人体药代动力学消除和体内积累现象。通过添加描述这种演变的缩放函数,对该模型进行修正以考虑暴露中任何可能的时间演变。使用近似贝叶斯计算从现有的生物监测数据拟合此暴露模型。根据风险评估,提出并讨论了特定的汇总统计量以及模拟和观察到的统计分布之间的适当距离。然后将推广的方法应用于一组法国渔民家庭中二恶英血液浓度的测量。该模型的输出是根据观察到的膳食摄入量对体内负荷分布的估计以及1930年至如今法国膳食中二恶英暴露的演变。该成功拟合二恶英数据的模型也可与其他生物监测数据一起使用,以改进对许多其他污染物的风险评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验