Brandt L, Mertzlufft F, Dick W
Klinik für Anaesthesiologie, Johannes Gutenberg-Universität Mainz.
Anaesthesist. 1989 Apr;38(4):167-73.
The Christiansen-Douglas-Haldane effect describes the reduced CO2 binding capacity of oxygenated as compared to deoxygenated hemoglobin on the basis of its increased acidity. This study describes the development of the above effect during the first 2 min of hyperoxic intubation apnea. METHODS. After institutional approval 12 patients (NYHA III, ASA IV) scheduled for coronary-artery bypass grafting were studied after written informed consent. Routine monitoring measures included invasive arterial and pulmonary-arterial pressure monitoring. Pulse oximetry (Nellcor N 101) was also used during intubation apnea. Premedication consisted of flunitrazepam 2.0 mg p.o. the evening before operation and another 2.0 mg p.o. 90-120 min before induction of anesthesia. Following standardized preoxygenation induction of anesthesia was performed with 20-25 micrograms/kg fentanyl and 0.1 mg/kg pancuronium. After cessation of spontaneous respiration, controlled ventilation was continued with 100% oxygen until intubation. Thirteen arterial (a) and mixed-venous (v) blood samples were drawn sequentially immediately before and during the first 2 min of apnea and analyzed using Corning 150 pH/blood gas analyzer and a Corning 2500 CO-oximeter. RESULTS. As shown in Table 1 and Fig. 1, paO2 decreased from 485 +/- 100 mmHg before apnea to 376 +/- 68 mmHg after 2 min of apnea while pvO2 remained constant at 47-50 mmHg. Arterial oxygen saturation (saO2) showed stable values greater than 97% while svO2 slightly increased from 81.9% to 82.4% until the end of apnea. A biphasic increase was observed in paCO2 from 41.2 +/- 3.4 mmHg before to 54.5 +/- 3.9 mmHg at the end of apnea. An increase in pvO2 during apnea was linear from 45.7 +/- 3.9 mmHg to 51.9 +/- 4.0 mmHg. After 28.5 s of apnea paCO2 exceeded pvCO2 due to the Haldane effect ("pCO2 reversal"). During apnea, pHa decreased biphasically from 7.40 +/- 0.03 to 7.31 +/- 0.02. The speed of decrease was 0.106 pH units/min (5-35 s) in the 1st and 0.023 pH units/min in the 2nd min of apnea; pHv decreased almost linearly from 7.37 +/- 0.03 mmHg (5s) to 7.33 +/- 0.02 mmHg (115s). After 20.66 s of apnea pHa exceeded pHv ("pH reversal"); pH-reversal occurred earlier than pCO2 reversal (p less than = 0.05). CONCLUSIONS. During early hyperoxic apnea, venoarterial pH and pCO2 reversal can be observed due to the Christiansen-Douglas-Haldane effect. pH reversal starts earlier than pCO2 reversal. Reversal time is dependent on arterial-mixed-venous pCO2 difference (avDpCO2) before apnea, arterial-mixed-venous O2 saturation difference (avDsO2) and cardiac output. The amount of reversal is dependent on avDsO2, i.e. the pH difference of arterial and m
克里斯蒂安森 - 道格拉斯 - 霍尔丹效应描述了与脱氧血红蛋白相比,氧合血红蛋白因其酸度增加而导致二氧化碳结合能力降低的现象。本研究描述了高氧插管性呼吸暂停最初2分钟内上述效应的发展情况。方法:经机构批准后,在获得书面知情同意书后,对12例计划进行冠状动脉搭桥手术的患者(纽约心脏协会III级,美国麻醉医师协会IV级)进行了研究。常规监测措施包括有创动脉和肺动脉压监测。在插管性呼吸暂停期间也使用了脉搏血氧饱和度仪(Nellcor N 101)。术前用药包括术前晚口服氟硝西泮2.0毫克,麻醉诱导前90 - 120分钟再口服2.0毫克。在进行标准化的预给氧后,用20 - 25微克/千克芬太尼和0.1毫克/千克潘库溴铵进行麻醉诱导。自主呼吸停止后,持续用100%氧气进行控制通气直至插管。在呼吸暂停前及呼吸暂停最初2分钟内,依次采集13份动脉(a)血和混合静脉(v)血样本,并用康宁150型pH/血气分析仪和康宁2500型一氧化碳血氧计进行分析。结果:如表1和图1所示,动脉血氧分压(paO2)在呼吸暂停前为485±100毫米汞柱,呼吸暂停2分钟后降至376±68毫米汞柱,而混合静脉血氧分压(pvO2)保持在47 - 50毫米汞柱不变。动脉血氧饱和度(saO2)显示稳定值大于97%,而混合静脉血氧饱和度(svO2)在呼吸暂停结束前从81.9%略有增加至82.4%。观察到动脉血二氧化碳分压(paCO2)呈双相增加,从呼吸暂停前的41.2±3.4毫米汞柱升至呼吸暂停结束时的54.5±3.9毫米汞柱。呼吸暂停期间混合静脉血氧分压(pvO2)呈线性增加,从45.7±3.9毫米汞柱升至51.9±4.0毫米汞柱。呼吸暂停28.5秒后,由于霍尔丹效应(“pCO2反转”),paCO2超过pvCO2。呼吸暂停期间,动脉血pH值(pHa)呈双相下降,从7.40±0.03降至7.31±0.02。下降速度在呼吸暂停第1分钟为0.106个pH单位/分钟(5 - 35秒),第2分钟为0.023个pH单位/分钟;混合静脉血pH值(pHv)从7.37±0.03毫米汞柱(5秒)几乎呈线性下降至7.33±0.02毫米汞柱(115秒)。呼吸暂停20.66秒后,pHa超过pHv(“pH反转”);pH反转比pCO2反转更早发生(p≤0.05)。结论:在早期高氧性呼吸暂停期间,由于克里斯蒂安森 - 道格拉斯 - 霍尔丹效应,可观察到静脉 - 动脉pH值和pCO2反转。pH反转比pCO2反转更早开始。反转时间取决于呼吸暂停前动脉 - 混合静脉血二氧化碳分压差(avDpCO2)、动脉 - 混合静脉血氧饱和度差(avDsO2)和心输出量。反转量取决于avDsO2,即动脉血和混合静脉血的pH差值。