The Australian Wine Research Institute, Adelaide, South Australia, Australia
The Australian Wine Research Institute, Adelaide, South Australia, Australia.
Appl Environ Microbiol. 2019 Feb 6;85(4). doi: 10.1128/AEM.02429-18. Print 2019 Feb 15.
The addition of SO is practiced in the wine industry to mitigate the risk of microbial spoilage and to extend wine shelf-life. Generally, this strategy does not interfere with primary alcoholic fermentation, as wine strains of exhibit significant SO tolerance, largely driven by the efflux pump Ssu1p. One of the key yeast species responsible for wine spoilage is , which also exhibits strain-dependent SO tolerance, although this occurs via unknown mechanisms. To evaluate the factors responsible for the differential sulfite tolerance observed in strains, we employed a multifaceted approach to examine both expression and allelic differences in the gene. Transcriptomic analysis following exposure to SO highlighted different inducible responses in two strains. It also revealed disproportionate transcription of one putative haplotype in both genetic backgrounds. Here, we confirm the functionality of by complementation of a null mutant in a wine strain. The expression of four distinct haplotypes in the Δ mutant revealed up to a 3-fold difference in conferred SO tolerance. Substitution of key amino acids distinguishing the encoded proteins was performed to evaluate their relative contribution to SO tolerance. Protein modeling of two haplotypes which differed in two amino acid residues suggested that these substitutions affect the binding of Ssu1p ligands near the channel opening. Taken together, preferential transcription of a allele that encodes a more efficient Ssu1p transporter may represent one mechanism that contributes to differences in sulfite tolerances between strains. is one of the most important wine spoilage microorganisms, with the use of sulfite being the major method to control spoilage. However, this species displays a wide intraspecies distribution in sulfite tolerance, with some strains capable of tolerating high concentrations of SO, with relatively high concentrations of this antimicrobial needed for their control. Although SO tolerance has been studied in several organisms and particularly in , little is known about the mechanisms that confer SO tolerance in Here, we confirmed the functionality of the sulfite efflux pump encoded by and determined the efficiencies of four different haplotypes. Gene expression analysis showed greater expression of the haplotype conferring greater SO tolerance. Our results suggest that a combination of haplotype efficiency, copy number, and haplotype expression levels likely contributes to the diverse SO tolerances observed for different strains.
亚硫酸盐的添加在葡萄酒行业中被广泛应用,以降低微生物污染的风险并延长葡萄酒的保质期。一般来说,这种策略不会干扰主要的酒精发酵,因为具有显著的亚硫酸盐耐受性,这主要归因于外排泵 Ssu1p。另一种负责葡萄酒变质的关键酵母物种是 ,它也表现出菌株依赖性的亚硫酸盐耐受性,尽管其机制尚不清楚。为了评估导致不同 菌株之间观察到的亚硫酸盐耐受性差异的因素,我们采用了一种多方面的方法来研究 基因的表达和等位基因差异。暴露于亚硫酸盐后进行的转录组分析突出了两种 菌株的不同诱导反应。它还揭示了在两种遗传背景中一种假定的 单倍型不成比例的转录。在这里,我们通过在 酿酒酵母菌株中缺失突变体的互补来证实 的功能。在 Δ 突变体中表达了四个不同的 单倍型,这表明它们在赋予的亚硫酸盐耐受性方面存在高达 3 倍的差异。为了评估它们对亚硫酸盐耐受性的相对贡献,对区分编码蛋白的关键氨基酸进行了替换。对两个单倍型的蛋白建模表明,这两个氨基酸残基的替换会影响靠近通道开口的 Ssu1p 配体的结合。综上所述,优先转录编码更有效的 Ssu1p 转运蛋白的 等位基因可能是导致 菌株之间亚硫酸盐耐受性差异的一个机制。 是最重要的葡萄酒污染微生物之一,使用亚硫酸盐是控制污染的主要方法。然而,该物种在亚硫酸盐耐受性方面表现出广泛的种内分布,一些菌株能够耐受高浓度的 SO,而控制它们需要相对较高浓度的这种抗菌剂。尽管在几个生物体中特别是在 中已经研究了亚硫酸盐耐受性,但对于赋予 亚硫酸盐耐受性的机制知之甚少。在这里,我们证实了由 编码的亚硫酸盐外排泵的功能,并确定了四个不同 单倍型的效率。基因表达分析表明,赋予更高亚硫酸盐耐受性的单倍型表达水平更高。我们的结果表明, 单倍型效率、拷贝数和单倍型表达水平的组合可能导致不同 菌株之间观察到的不同的亚硫酸盐耐受性。